Part 32 (2/2)

89. 89. Ibid. Ibid.

90. 90. See /neuroscience.shtml. NanoComputer Dream Team, ”The Law of Accelerating Returns, Part II,” nanocomputer.org/index.cfm?content=90&Menu=19. See /neuroscience.shtml. NanoComputer Dream Team, ”The Law of Accelerating Returns, Part II,” nanocomputer.org/index.cfm?content=90&Menu=19.

91. 91. See info.med.yale.edu/bbs/faculty/she_go.html. See info.med.yale.edu/bbs/faculty/she_go.html.

92. 92. Gordon M. Shepherd, ed., Gordon M. Shepherd, ed., The Synaptic Organization of the Brain The Synaptic Organization of the Brain, 4th ed. (New York: Oxford University Press, 1998), p. vi.

93. 93. E.Young, ”Cochlear Nucleus,” in ibid., pp. 12158. E.Young, ”Cochlear Nucleus,” in ibid., pp. 12158.

94. 94. Tom Yin, ”Neural Mechanisms of Encoding Binaural Localization Cues in the Auditory Brainstem,” in D. Oertel, R. Fay, and A. Popper, eds., Tom Yin, ”Neural Mechanisms of Encoding Binaural Localization Cues in the Auditory Brainstem,” in D. Oertel, R. Fay, and A. Popper, eds., Integrative Functions in the Mammalian Auditory Pathway Integrative Functions in the Mammalian Auditory Pathway (New York: Springer-Verlag, 2002), pp. 99159. (New York: Springer-Verlag, 2002), pp. 99159.

95. 95. John Ca.s.seday, Thane Premouw, and Ellen Covey, ”The Inferior Colliculus: A Hub for the Central Auditory System,” in Oertel, Fay, and Popper, John Ca.s.seday, Thane Premouw, and Ellen Covey, ”The Inferior Colliculus: A Hub for the Central Auditory System,” in Oertel, Fay, and Popper, Integrative Functions in the Mammalian Auditory Pathway Integrative Functions in the Mammalian Auditory Pathway, pp. 238318.

96. 96. Diagram by Lloyd Watts, /neuroscience.shtml, adapted from E.Young, ”Cochlear Nucleus” in G. Shepherd, ed., Diagram by Lloyd Watts, /neuroscience.shtml, adapted from E.Young, ”Cochlear Nucleus” in G. Shepherd, ed., The Synaptic Organization of the Brain The Synaptic Organization of the Brain, 4th ed. (New York: Oxford University Press, 2003 [first published 1998]), pp. 12158; D. Oertel in D. Oertel, R. Fay, and A. Popper, eds., Integrative Functions in the Mammalian Auditory Pathway Integrative Functions in the Mammalian Auditory Pathway (New York: Springer-Verlag, 2002), pp. 15; John Ca.s.seday, T. Fremouw, and E. Covey, ”Inferior Colliculus” in ibid.; J. LeDoux, (New York: Springer-Verlag, 2002), pp. 15; John Ca.s.seday, T. Fremouw, and E. Covey, ”Inferior Colliculus” in ibid.; J. LeDoux, The Emotional Brain The Emotional Brain (New York: Simon & Schuster, 1997); J. Rauschecker and B. Tian, ”Mechanisms and Streams for Processing of 'What' and 'Where' in Auditory Cortex,” (New York: Simon & Schuster, 1997); J. Rauschecker and B. Tian, ”Mechanisms and Streams for Processing of 'What' and 'Where' in Auditory Cortex,” Proceedings of the National Academy of Sciences Proceedings of the National Academy of Sciences 97.22: 1180011806. 97.22: 1180011806.

Brain regions modeled: Cochlea: Sense organ of hearing. Thirty thousand fibers convert motion of the stapes into spectrotemporal representations of sound.MC: Multipolar cells. Measure spectral energy.GBC: Globular bushy cells. Relay spikes from the auditory nerve to the lateral superior olivary complex (includes LSO and MSO). Encoding of timing and amplitude of signals for binaural comparison of level.SBC: Spherical bushy cells. Provide temporal sharpening of time of arrival, as a preprocessor for interaural time-difference calculation (difference in time of arrival between the two ears, used to tell where a sound is coming from).OC: Octopus cells. Detection of transients.DCN: Dorsal cochlear nucleus. Detection of spectral edges and calibrating for noise levels.VNTB: Ventral nucleus of the trapezoid body. Feedback signals to modulate outer hair-cell function in the cochlea.VNLL, PON: Ventral nucleus of the lateral lemniscus; peri-olivary nuclei: processing transients from the 0C.MSO: Medial superior olive. Computing interaural time difference.LSO: Lateral superior olive. Also involved in computing interaural level difference.ICC: Central nucleus of the inferior colliculus. The site of major integration of multiple representations of sound.ICx: Exterior nucleus of the inferior colliculus. Further refinement of sound localization.SC: Superior colliculus. Location of auditory/visual merging.MGB: Medial geniculate body. The auditory portion of the thalamus.LS: Limbic system. Comprising many structures a.s.sociated with emotion, memory, territory, et cetera.AC: Auditory cortex.

97. 97. M. S. Humayun et al., ”Human Neural Retinal Transplantation,” M. S. Humayun et al., ”Human Neural Retinal Transplantation,” Investigative Ophthalmology and Visual Science Investigative Ophthalmology and Visual Science 41.10 (September 2000): 31003106. 41.10 (September 2000): 31003106.

98. 98. Information Science and Technology Colloquium Series, May 23, 2001, isandtcolloq.gsfc.nasa.gov/spring2001/speakers/poggio.html. Information Science and Technology Colloquium Series, May 23, 2001, isandtcolloq.gsfc.nasa.gov/spring2001/speakers/poggio.html.

99. 99. Kah-Kay Sung and Tomaso Poggio, ”Example-Based Learning for View-Based Human Face Detection,” Kah-Kay Sung and Tomaso Poggio, ”Example-Based Learning for View-Based Human Face Detection,” IEEE Transactions on Pattern a.n.a.lysis and Machine Intelligence IEEE Transactions on Pattern a.n.a.lysis and Machine Intelligence 20.1 (1998): 3951, portal.acm.org/citation.cfm?id=275345&dl= ACM&coll=GUIDE. 20.1 (1998): 3951, portal.acm.org/citation.cfm?id=275345&dl= ACM&coll=GUIDE.

100. 100. Maximilian Riesenhuber and Tomaso Poggio, ”A Note on Object Cla.s.s Representation and Categorical Perception,” Center for Biological and Computational Learning, MIT, AI Memo 1679 (1999), Maximilian Riesenhuber and Tomaso Poggio, ”A Note on Object Cla.s.s Representation and Categorical Perception,” Center for Biological and Computational Learning, MIT, AI Memo 1679 (1999),

101. 101. K. Tanaka, ”Inferoternporal Cortex and Object Vision,” K. Tanaka, ”Inferoternporal Cortex and Object Vision,” Annual Review of Neuroscience Annual Review of Neuroscience 19 (1996): 109-39; Anuj Mohan, ”Object Detection in Images by Components,” Center for Biological and Computational Learning, MIT, AI Memo 1664 (1999), citeseer.ist.psu.edu/cache/papers/cs/12185/ftp:zSzzSzpublications.ai.mit.eduzSzai-publicationszSz15001999zSzAIM-1664.pdf/mohan99object.pdf; Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio, ”Example-Based Object Detection in Images by Components,” 19 (1996): 109-39; Anuj Mohan, ”Object Detection in Images by Components,” Center for Biological and Computational Learning, MIT, AI Memo 1664 (1999), citeseer.ist.psu.edu/cache/papers/cs/12185/ftp:zSzzSzpublications.ai.mit.eduzSzai-publicationszSz15001999zSzAIM-1664.pdf/mohan99object.pdf; Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio, ”Example-Based Object Detection in Images by Components,” IEEE Transactions on Pattern a.n.a.lysis and Machine Intelligence IEEE Transactions on Pattern a.n.a.lysis and Machine Intelligence 23.4 (April 2001), cbcl.mit.edu/projects/cbd/publications/ps/mohan-ieee.pdf; B. Heisele, T. Poggio, and M. Pontil, ”Face Detection in Still Gray Images,” Artificial Intelligence Laboratory, MIT, Technical Report AI Memo 1687 (2000). Also see Bernd Heisele, Thomas Serre, and Stanley Bilesch, ”Component-Based Approach to Face Detection,” Artificial Intelligence Laboratory and the Center for Biological and Computational Learning, MIT (2001), pany called Seegrid based on Moravec's research. See . Hans Moravec and Scott Friedman have founded a robotics company called Seegrid based on Moravec's research. See .

106. 106. M. A. Mahowald and C. Mead, ”The Silicon Retina,” M. A. Mahowald and C. Mead, ”The Silicon Retina,” Scientific American Scientific American 264.5 (May 1991): 7682. 264.5 (May 1991): 7682.

107. 107. Specifically, a low-pa.s.s filter is applied to one receptor (such as a photoreceptor). This is multiplied by the signal of the neighboring receptor. If this is done in both directions and the results of each operation subtracted from zero, we get an output that reflects the direction of movement. Specifically, a low-pa.s.s filter is applied to one receptor (such as a photoreceptor). This is multiplied by the signal of the neighboring receptor. If this is done in both directions and the results of each operation subtracted from zero, we get an output that reflects the direction of movement.

108. 108. On Berger, see /news/news.jsp?id=ns99993488. 177.2386 (March 15,2003): 4, /news/news.jsp?id=ns99993488.

110. 110. Charles Choi, ”Brain-Mimicking Circuits to Run Navy Robot,” UPI, June 7, 2004, /view.cfm?StoryID=20040606-103352-6086r. Charles Choi, ”Brain-Mimicking Circuits to Run Navy Robot,” UPI, June 7, 2004, /view.cfm?StoryID=20040606-103352-6086r.

111. 111. Giacomo Rizzolatti et al., ”Functional Organization of Inferior Area 6 in the Macaque Monkey. II. Area F5 and the Control of Distal Movements,” Giacomo Rizzolatti et al., ”Functional Organization of Inferior Area 6 in the Macaque Monkey. II. Area F5 and the Control of Distal Movements,” Experimental Brain Research Experimental Brain Research 71.3 (1998): 491507. 71.3 (1998): 491507.

112. 112. M. A. Arbib, ”The Mirror System, Imitation, and the Evolution of Language,” in Kerstin Dautenhahn and Chrystopher L. Nehaniv, eds., M. A. Arbib, ”The Mirror System, Imitation, and the Evolution of Language,” in Kerstin Dautenhahn and Chrystopher L. Nehaniv, eds., Imitation in Animals and Artifacts Imitation in Animals and Artifacts (Cambridge, Ma.s.s.: MIT Press, 2002). (Cambridge, Ma.s.s.: MIT Press, 2002).

113. 113. Marc D. Hauser, Noam Chomsky, and W. Tec.u.mseh Fitch, ”The Faculty of language: What Is It, Who Has It, and How Did It Evolve?” Marc D. Hauser, Noam Chomsky, and W. Tec.u.mseh Fitch, ”The Faculty of language: What Is It, Who Has It, and How Did It Evolve?” Science Science 298 (November 2002): 156979, /2003112/09/science/09BRAI.html?ex=1386306000&en=294f5e91dd262a1a&ei=5007&partner=USERLAND.

116. 116. Antonio R. Damasio, Antonio R. Damasio, Descartes' Error: Emotion, Reason and the Human Brain Descartes' Error: Emotion, Reason and the Human Brain (New York: Putnam, 1994). (New York: Putnam, 1994).

117. 117. M. P. Maher et al., ”Microstructures for Studies of Cultured Neural Networks,” M. P. Maher et al., ”Microstructures for Studies of Cultured Neural Networks,” Medical and Biological Engineering and Computing Medical and Biological Engineering and Computing 37.1 (January 1999): 11018; John Wright et al., ”Towards a Functional MEMS Neurowell by Physiological Experimentation,” 37.1 (January 1999): 11018; John Wright et al., ”Towards a Functional MEMS Neurowell by Physiological Experimentation,” Technical Digest Technical Digest, ASME, 1996 International Mechanical Engineering Congress and Exposition, Atlanta, November 1996, DSC (Dynamic Systems and Control Division), vol. 59, pp. 33338.

118. 118. W. French Anderson, ”Genetics and Human Malleability,” W. French Anderson, ”Genetics and Human Malleability,” Hastings Center Report Hastings Center Report 23.20 (January/February 1990): 1. 23.20 (January/February 1990): 1.

119. 119. Ray Kurzweil, ”A Wager on the Turing Test: Why I Think I Will Win,” KurzweilAI.net, April 9, 2002, munication, January 2005), ”An in vivo fiber network as proposed in /NMI/7.3.1.htm can handle 10 Robert A. Freitas Jr. proposes a future nanotechnology-based brain-uploading system that would effectively be instantaneous. According to Freitas (personal communication, January 2005), ”An in vivo fiber network as proposed in /NMI/7.3.1.htm can handle 1018 bits/sec of data traffic, capacious enough for real-time brain-state monitoring. The fiber network has a 30 cm bits/sec of data traffic, capacious enough for real-time brain-state monitoring. The fiber network has a 30 cm3 volume and generates 46 watts waste heat, both small enough for safe installation in a 1400 cm volume and generates 46 watts waste heat, both small enough for safe installation in a 1400 cm3 25-watt human brain. Signals travel at most a few meters at nearly the speed of light, so transit time from signal origination at neuron sites inside the brain to the external computer system mediating the upload are ~0.00001 msec which is considerably less than the minimum ~5 msec neuron discharge cycle time. Neuron-monitoring chemical sensors located on average ~2 microns apart can capture relevant chemical events occurring within a ~5 msec time window, since this is the approximate diffusion time for, say, a small neuropeptide across a 2-micron distance (/NMII/Tables/3.4.jpg). Thus human brain state monitoring can probably be instantaneous, at least on the timescale of human neural response, in the sense of 'nothing of significance was missed.' ” 25-watt human brain. Signals travel at most a few meters at nearly the speed of light, so transit time from signal origination at neuron sites inside the brain to the external computer system mediating the upload are ~0.00001 msec which is considerably less than the minimum ~5 msec neuron discharge cycle time. Neuron-monitoring chemical sensors located on average ~2 microns apart can capture relevant chemical events occurring within a ~5 msec time window, since this is the approximate diffusion time for, say, a small neuropeptide across a 2-micron distance (/NMII/Tables/3.4.jpg). Thus human brain state monitoring can probably be instantaneous, at least on the timescale of human neural response, in the sense of 'nothing of significance was missed.' ”

121. 121. M. C. Diamond et al., ”On the Brain of a Scientist: Albert Einstein,” M. C. Diamond et al., ”On the Brain of a Scientist: Albert Einstein,” Experimental Neurology Experimental Neurology 88 (1985): 198204. 88 (1985): 198204.

<script>