Part 9 (2/2)
259.9
251.4
Oxygen ”
278.5
274.8
Water-vapor ”
165.8
165.6
Heat cals.
829.0
834.5
+----------------------+--------+-----------+
Thus does the apparatus prove accurate for the determination of all four factors.
BALANCE FOR WEIGHING SUBJECT.
The loss or gain in body-weight has always been taken as indicating the nature of body condition, a loss usually indicating that there is a loss of body substance and a gain the reverse. In experiments in which a delicate balance between the income and outgo is maintained, as in these experiments, it is of special interest to compare the losses in weight as determined by the balance with the calculated metabolism of material and thus obtain a check on the computation of the whole process of metabolism. Since the days of Sanctorius the loss of weight of the body from period to period has been of special interest. The most recent contribution to these investigations is that of the balance described by Lombard,[31] in which the body-weight is recorded graphically from moment to moment with an extraordinarily sensitive balance.
In connection with the experiments here described, however, the weighing with the balance has a special significance, in that it is possible to have an indirect determination of the oxygen consumption. As pointed out by Pettenkofer and Voit, if the weight of the excretions and the loss in body-weight are taken into consideration, the difference between the weight of the excretions and the loss in body-weight should be the weight of the oxygen absorbed. With this apparatus we are able to determine the water-vapor, the carbon-dioxide excretion, and the weight of the urine and feces when pa.s.sed. If there is an accurate determination of the body-weight from hour to hour, this should give the data for computing exactly the oxygen consumption. Moreover, we have the direct determination of oxygen with which the indirect method can be compared.
In the earlier apparatus this comparison was by no means as satisfactory as was desired. The balance there used was sensitive only to 2 grams, the experiments were long (24 hours or more), and it seemed to be absolutely impossible, even by exerting the utmost precaution, to secure the body-weight of the subject each day with exactly the same clothing and accessories. Furthermore, where there is a constant change in body-weight amounting to 0.5 gram or more per minute, it is obvious that the weighing should be done at exactly the same moment from day to day.
It is seen, therefore, that the comparison with the direct oxygen determination is in reality an investigation by itself, involving the most accurate measurements and the most painstaking development of routine.
With the hope of contributing materially to our knowledge regarding the indirect determination of oxygen, the special form of balance shown in fig. 9 was installed above the chair calorimeter. This balance is extremely sensitive. With a dead load of 100 kilograms in each pan it has shown a sensitiveness of 0.1 gram, but in order to have the apparatus absolutely air-tight for the oxygen and carbon-dioxide determination, the rod on which the weighing-chair is suspended must pa.s.s through an air-tight closure. For this closure we have used a thin rubber membrane, weighing about 1.34 grams, one end of which is tied to a hard-rubber tube ascending from the chair to the top of the calorimeter, the other end being tied to the suspension rod. In playing up and down this rod takes up a varying weight of the rubber diaphragm, depending upon the position which it a.s.sumes, and therefore the sensitiveness noted by the balance with a dead load and swinging freely is greater than that under conditions of actual use. Preliminary tests with the balance lead us to believe that with a slight improvement in the technique a man can be weighed to within 0.3 gram by means of this balance. A series of check-experiments to test the indirect with the direct determination of oxygen are in progress at the moment of writing, and it is hoped that this problem can be satisfactorily solved ere long.
During the process of weighing, the ventilating air-current is stopped so as to prevent any slight tension on the rubber diaphragm and furnish the best conditions for sensitive equilibrium. After the weighing has been made and the time exactly recorded, the load is thrown off the knife-edges of the balance, and then provision has been made to raise the rod supporting the chair and simultaneously force a rubber stopper tightly into the hard rubber tube at the top of the calorimeter, thus making the closure absolutely tight. It is somewhat hazardous to rely during the entire period of an experiment upon the thin rubber membrane for the closure when the blower is moving the air-current.
To raise the chair and the man suspended on it in such a way as to draw the cork into the hard-rubber tube, we formerly used a large hand-lever, which was not particularly satisfactory. Thanks to the suggestion of Mr.
E. H. Metcalf, we have been able to attach a pneumatic lift (fig. 9) in that the cross-bar above the calorimeter chamber, to which the suspension rod is attached, rests on two oak uprights and can be raised by admitting air into an air-cus.h.i.+on, through the central opening of which pa.s.ses the chair-suspending rod. As the air enters the air-cus.h.i.+on it expands and lifts a large wooden disk which, in turn, lifts the iron cross-bar, raising the chair and weight suspended upon it. At the proper height and when the stopper has been thoroughly forced into place, two movable blocks are slipped beneath the ends of the iron cross-bar and thus the stopper is held firmly in place. The tension is then released from the air-cus.h.i.+on. This apparatus functionates very satisfactorily, raising the man or lowering him upon the knife-edges of the balance with the greatest regularity and ease.
PULSE RATE AND RESPIRATION RATE.
The striking relations.h.i.+p existing between pulse rate and general metabolism, noted in the fasting experiments made with the earlier apparatus, has impressed upon us the desirability of obtaining records of the pulse rate as frequently as possible during an experiment.
Records of the respiration rate also have an interest, though not of as great importance. In order to obtain the pulse rate, we attach a Bowles stethoscope over the apex beat of the heart and hold it in place with a light canvas harness. Through a long transmission-tube pa.s.sing through an air-tight closure in the walls of the calorimeter it is possible to count the beats of the heart without difficulty. The respiration rate is determined by attaching a Fitz pneumograph about the trunk, midway between the nipples and the umbilicus. The excursions of the tambour pointer as recorded on the smoked paper of the kymograph give a true picture of the respiration rate.
Of still more importance, however, is the fact that the expansion and contraction of the pneumograph afford an excellent means for noting the minor muscular activity of a subject, otherwise considered at complete rest. The slightest movement of the arm or the contraction or relaxation of any of the muscles of the body-trunk results in a movement of the tambour quite distinct from the respiratory movements of the thorax or abdomen. These movements form a very true picture of the muscular movements of the subject, and these graphic records have been of very great value in interpreting the results of many of the experiments.
ROUTINE OF AN EXPERIMENT WITH MAN.
In the numerous previously published reports which describe the construction of and experiments with the respiration calorimeter, but little attention has been devoted to a statement of the routine. Since, with the increasing interest in this form of apparatus and the possible construction of others of similar form, a detailed description of the routine would be of advantage, it is here included.
PREPARATION OF SUBJECT.
Prior to an experiment, the subject is usually given either a stipulated diet for a period of time varying with the nature of the experiment or, as in the case of some experiments, he is required to go without food for at least 12 hours preceding. Occasionally it has been deemed advisable to administer a cup of black coffee without sugar or cream, and by this means we have succeeded in studying the early stages of starvation without making it too uncomfortable for the subject. The stimulating effect of the small amount of black coffee on metabolism is hardly noticeable and for most experiments it does not introduce any error.
The urine is collected usually for 24 hours before, in either 6 or 12 hour periods. During the experiment proper urine is voided if possible at the end of each period. This offers an opportunity for studying the periodic elimination of nitrogen and helps frequently to throw light upon any peculiarities of metabolism.
Even with the use of a long-continued preceding diet of constant composition, it is impossible to rely upon any regular time for defecation or for any definite separation of feces. For many experiments it is impracticable and highly undesirable to have the subject attempt to defecate inside the chamber, and for experiments of short duration the desire to defecate is avoided by emptying the lower bowel with a warm-water enema just before the subject enters the chamber. Emphasis should be laid upon the fact that a moderate amount of water only should be used and only the lower bowel emptied, so as not to increase the desire for defecation.
The clothing is usually that of a normal subject, although occasionally experiments have been made to study the influence of various amounts of clothing upon the person. There should be opportunity for a comfortable adjustment of the stethoscope and pneumograph, etc., and the clothing should be warm enough to enable the subject to remain comfortable and quiet during his sojourn inside the chamber.
The rectal thermometer, which has previously been carefully calibrated, is removed from a vessel of lukewarm water, smeared with vaseline, and inserted while warm in the r.e.c.t.u.m to the depth of 10 to 12 centimeters.
<script>