Part 6 (2/2)

In order to subdivide experiments into periods as short as 1 or 2 hours, it is necessary to deflect the air-current at the end of each period from one set of purifiers to the other, in order to weigh the set used and to measure the quant.i.ty of carbon dioxide and water-vapor absorbed.

The conditions under which these changes from one system to another are made, and which call for an absolutely gas-tight closure, have been discussed in detail elsewhere.[21] It is sufficient to state here that the very large majority of mechanical valves will not serve the purpose, since it is necessary to have a pressure of some 40 millimeters of mercury on one side of the valve at the entrance to the absorber system and on the other side atmospheric pressure. A valve with an internal diameter of not less than 25 millimeters must be used, and to secure a tight closure of this large area and permit frequent opening and shutting is difficult. After experimenting with a large number of valves, a valve of special construction employing a mechanical seal ultimately bathed in mercury was used for the earlier apparatus. The possibility of contamination of the air-current by mercury vapor was duly considered and pointed out in a description of this apparatus. It was not until two years later that difficulties began to be experienced and a number of men were severely poisoned while inside the chamber. A discussion of this point has been presented elsewhere.[22] At that time mercury valves were used both at the entrance and exit ends of the absorber system, although as a matter of fact, when the air leaves the last absorber and returns to the respiration chamber, the pressure is but a little above that of the atmosphere. Consequently, mechanical valves were subst.i.tuted for mercurial valves at the exit and the toxic symptoms disappeared. In constructing the new calorimeters it seemed to be desirable to avoid all use of mercury, if possible. We were fortunate in finding a mechanical valve which suited this condition perfectly.

These valves, which are very well constructed, have never failed to show complete tightness under all possible tests and are used at the exit and entrance end of the absorber system. Their workmans.h.i.+p is of the first order, and the valve is somewhat higher in price than ordinary mechanical valves. They have been in use on the apparatus for a year now and have invariably proved to be absolutely tight. They are easy to obtain and are much easier to manipulate and much less c.u.mbersome than the mercury valves formerly used.

COUPLINGS.

Throughout the construction of the respiration apparatus and its various parts, it was constantly borne in mind that the slightest leak would be very disastrous for accurate oxygen determinations. At any point where there is a pressure greater or less than that of the atmosphere, special precaution must be taken. At no point in the whole apparatus is it necessary to be more careful than with the couplings which connect the various absorber systems with each other and with the valves; for these couplings are opened and closed once every hour or two and hence are subject to considerable strain at the different points. If they are not tight the experiment is a failure so far as the determination of oxygen is concerned. For the various parts of the absorber system we have relied upon the original type of couplings used in the earlier apparatus. A rubber gasket is placed between the male and female part of the coupling and the closure can be made very tight. In fact, after the absorbers are coupled in place they are invariably subjected to severe tests to prove tightness.

For connecting the piping between the calorimeter and the absorption system we use ordinary one-inch hose-couplings, firmly set up by means of a wrench and disturbed only when necessary to change from one calorimeter chamber to another.

ABSORBER TABLE.

The purifying apparatus for the air-current is compactly and conveniently placed on a solidly constructed table which can be moved about the laboratory at will. The special form of caster on the bottom of the posts of the table permits its movement about the laboratory at will and by s.c.r.e.w.i.n.g down the hand screws the table can be firmly fixed to the floor.

The details of the table are shown in fig. 30. (See also fig. 4, page 4.) The air coming from the calorimeter pa.s.ses in the direction of the downward arrow through a 3/4-inch pipe into the blower, which is immersed in oil in an iron box F. The blower is driven by an electric motor fastened to a small shelf at the left of the table. The air leaving the blower ascends in the direction of the arrow to the valve system H, where it can be directed into one of the two parallel sets of purifiers; after it pa.s.ses through these purifiers (sulphuric-acid vessel 2, potash-lime container K, and sulphuric-acid vessel 1) it goes through the sodium-bicarbonate can G to a duplicate valve system on top of the table. From there it pa.s.ses through a pipe along the top of the table and rises in the vertical pipe to the hose connection which is coupled with the calorimeter chamber.

The electric motor is provided with a snap-switch on one of the posts of the table and a regulating rheostat which permits variations in the speed of the motor and consequently in the ventilation produced by the blower. The blower is well oiled, and as oil is gradually carried in with the air, a small pet-c.o.c.k at the bottom of the T following the blower allows any acc.u.mulated oil to be drawn away from time to time.

The air entering the valve system at H enters through a cross, two arms of which connect with two ”white star” valves. The upper part of the cross is connected to a small rubber tubing and to the mercury manometer D, which also serves as a valve for pa.s.sing a given amount of air through a series of U-tubes for a.n.a.lysis of the air from time to time. It is a.s.sumed that the air drawn at the point H is of substantially the same composition as that inside the chamber, an a.s.sumption that may not be strictly true, but doubtless the sample thus obtained is constantly proportional to the average composition, which fluctuates but slowly. Ordinarily the piping leading from the left-hand arm of the tube D is left open to the air and consequently the difference in the level of the mercury in the two arms of D indicates the pressure on the system. This is ordinarily not far from 40 to 50 millimeters of mercury.

[Ill.u.s.tration: FIG. 30.--Diagram of absorber table. 1 and 2 contain sulphuric acid; K contains potash-lime; G, sodium bicarbonate can; F, rotary blower for maintaining air-current; H, valves for closing either side; and D, mercury manometer and valve for diverting air to U-tubes on table. Air leaves A, pa.s.ses through the meter, and then through drying tower B and through C to ingoing air-pipe. At the left is the regulating rheostat and motor and snap-switch. General direction of ventilation is indicated by arrows.]

The absorber table, with the U-tubes and meter for residual a.n.a.lyses, is shown in the foreground in fig. 2. The two white porcelain vessels with a silver-plated can between them are on the middle shelf. The sodium bicarbonate can, for removing traces of acid fumes, is connected in an upright position, while the motor, the controlling rheostat, and the blower are supported by the legs near the floor. The two rubber pipes leading from the table can be used to connect the apparatus either with the bed or chair calorimeter. In fig. 4 the apparatus is shown connected with the bed calorimeter, but just above the lowest point of the rubber tubing can be seen in the rear the coupling for one of the pipes leading from the chair calorimeter. The other is immediately below and to the left of it.

OXYGEN SUPPLY.

The residual air inside of the chamber amounts to some 1,300 liters and contains about 250 liters of oxygen. Consequently it can be seen that in an 8-hour experiment the subject could easily live during the entire time upon the amount of oxygen already present in the residual air. It has been repeatedly shown that until the per cent of oxygen falls to about 11, or about one-half normal, there is no disturbance in the respiratory exchange and therefore about 125 liters of oxygen would be available for respiration even if no oxygen were admitted. Inasmuch as the subject when at rest uses not far from 14 to 15 liters per hour, the amount originally present in the chamber would easily suffice for an 8-hour experiment. Moreover, the difficulties attending an accurate gas a.n.a.lysis and particularly the calculation of the total amount of oxygen are such that satisfactory determinations of oxygen consumption by this method would be impossible. Furthermore, from our previous experience with long-continued experiments of from 10 days to 2 weeks, it has been found that oxygen can be supplied to the system readily and the amount thus supplied determined accurately. Consequently, even in these short experiments, we adhere to the original practice of supplying oxygen to the air and noting the amount thus added.

The oxygen supply was formerly obtained from small steel cylinders of the highly compressed gas. This gas was made by the calcium-manganate method and represented a high degree of purity for commercial oxygen.

More recently we have been using oxygen of great purity made from liquid air. Inasmuch as this oxygen is very pure and much less expensive than the chemically-prepared oxygen, extensive provisions have been made for its continued use. Instead of using small cylinders containing 10 cubic feet and attaching thereto purifying devices in the shape of soda-lime U-tubes and a sulphuric-acid drying-tube, we now use large cylinders and we have found that the oxygen from liquid air is practically free from carbon dioxide and water-vapor, the quant.i.ties present being wholly negligible in experiments such as these. Consequently, no purifying attachments are considered necessary and the oxygen is delivered directly from the cylinder. The cylinders, containing 100 cubic feet (2,830 liters), under a pressure of 120 atmospheres, are provided with well-closing valves and weigh when fully charged 57 kilograms.

[Ill.u.s.tration: FIG. 31.--Diagram of oxygen balance and cylinder. At the top is the balance arrangement, and at the center its support. At the left is the oxygen cylinder, with reducing valve A, rubber tube D leading from it, F the electro-magnet which opens and closes D, K the hanger of the cylinder and support for the magnet, R the lever which operates the supports for the cylinder and its counterpoise S, T' a box which is raised and lowered by R, and T its surrounding box.]

It is highly desirable to determine the oxygen to within 0.1 gram, and we are fortunate in having a balance of the type used frequently in this laboratory which will enable us to weigh this cylinder accurately with a sensitiveness of less than 0.1 gram. Since 1 liter of oxygen weighs 1.43 grams, it can be seen that the amount of oxygen introduced into the chamber can be measured by this method within 70 cubic centimeters.

Even in experiments of but an hour's duration, where the amount of oxygen admitted from the cylinder is but 25 to 30 grams, it can be seen that the error in the weighing of the oxygen is much less than 1 per cent.

The earlier forms of cylinders used were provided with valves which required some special control and a rubber bag was attached to provide for any sudden rush of gas. The construction of the valve and valve-stem was unfortunately such that the well-known reduction valves could not be attached without leakage under the high pressure of 120 atmospheres.

With the type of cylinder at present in use, such leakage does not occur and therefore we simply attach to the oxygen cylinder a reduction-valve which reduces the pressure from 120 atmospheres to about 2 or 3 pounds to the square inch. The cylinder, together with the reduction valve, is suspended on one arm of the balance. The equipment of the arrangement is shown in fig. 31. (See also fig. 5, page 4.) The cylinder is supported by a clamp K hung from the balance arm, and the reduction-valve A is shown at the top. The counterpoise S consists of a piece of 7-inch pipe, with caps at each end. At a convenient height a wooden shelf with slightly raised rim is attached.

In spite of the rigid construction of this balance, it would be detrimental to allow this enormous weight to remain on the knife-edges permanently, so provision is made for raising the cylinders on a small elevator arrangement which consists of small boxes of wood, T, into which telescope other boxes, T'. A lever handle, R, when pressed forward, raises T' by means of a roller bearing U, and when the handle is raised the total weight of the cylinders is supported on the platforms.

The balance is attached to an upright I-beam which is anch.o.r.ed to the floor and ceiling of the calorimeter laboratory. Two large turnbuckle eye-bolts give still greater rigidity at the bottom. The whole apparatus is inclosed in a gla.s.s case, shown in fig. 5.

AUTOMATIC CONTROL OF OXYGEN SUPPLY.

The use of the reduction-valve has made the automatic control of the oxygen supply much simpler than in the apparatus formerly used. The details of the connections somewhat schematically outlined are given in fig. 32, in which D is the oxygen cylinder, K the supporting band, A the reduction-valve, and J the tension-equalizer attached to one of the calorimeters. Having reduced the pressure to about 2 pounds by means of the reduction-valve, the supply of oxygen can be shut off by putting a pinch-c.o.c.k on a rubber pipe leading from the reduction-valve to the calorimeters. Instead of using the ordinary screw pinch-c.o.c.k, this connection is closed by a spring clamp. The spring E draws on the rod which is connected at L and pinches the rubber tube tightly. The tension at E can be released by an electro-magnet F, which when magnetized exercises a pull on the iron rod, extends the spring E, and simultaneously releases the pressure on the rubber tube at L. To make the control perfectly automatic, the apparatus shown on the top of the tension-equalizer J is employed. A wire ring, with a wire support, is caused to pa.s.s up through a bearing fastened to the clamp above J. As the air inside of the whole system becomes diminished in volume and the rubber cap J sinks, there is a point at which a metal loop dips into two mercury cups C and C', thus closing the circuit, which causes a current of electricity to pa.s.s through F. This releases the pressure at L, oxygen rushes in, and the rubber bag J becomes distended. As it is distended, it lifts the metal loop out of the cups, C and C', and the circuit is broken. There is, therefore, an alternate opening and closing of this circuit with a corresponding admission of oxygen. The exact position of the rubber diaphragm can be read when desired from a pointer on a graduated scale attached to a support holding the terminals of the electric wires. More frequently, however, when the volume is required, instead of filling the bag to a definite point, as shown by the pointer, a delicate manometer is attached to the can by means of a pet-c.o.c.k and the oxygen is admitted by operating the switch B until the desired tension is reached.

<script>