Part 11 (1/2)
Source: TIFAC Technology Vision 2020 Report on chemical process industries TABLE 6.3.
Indian Chemical Industry: Sector Growth Pattern Annual Growth in Total Turnover (per cent) S. No. Sectors 199192 199293 199394 199495 199596 199697.
1 chemicals& 28.5 12.2 11.7 29.6 21.8 8.5.
plastics 2 Inorganic 26.2 36.7 10.1 42.3 20.1.
11.8.
3 Alkalies 24.1 18.2 11.0 27.3 59.7 4.4.
4 Fertilizers 32.4 3.7 1.7 30.3 15.0.
3.6.
5 paints& 21.4 6.3 10.3 20.5 18.7 4.1.
varnishes 116.
6 drugs& 24.2.
23.5 20.2 24.6 21.8.
21.1.
pharmls 7 soaps& 22.0 2.0 15.5 25.2 18.9 26.8.
detergents 8 polymers 42.6 17.0 8.6 37.0 21.5 2.7.
9 plastic products 35.4 15.8 32.0 43.6 33.7 5.6.
10 petroleum 8.8 16.5 5.4 33.6 19.6
28.0.
products source: CMIE Report on Indian Corporate Sector, April 1998 In terms of generic product user segments or characterized by functional areas like dyestuffs, pesticides and so on. But broader divisions like bulk chemicals and specialities are also used. Based on projections of basic indices like population, percapita income, industry, agriculture and services, the growth indicators for the Indian chemical industry can be envisioned as in table 6.4. If we add a component of vigorous action for exports, the growth would be much higher than what is indicated in here.
TABLE 6.4.
Growth Indicators for the Chemical Industry Sector 1995 2020 Growth (million tones) (million tones) petroleum 70 240250 3.5 times Fertilizers 9 >20 8.5 times Polymers 1.7 >15 8.5 times Fibres 0.8 >5 6.0 times Organic chemicals 3 20 6.0 times Dyestuffs & pigments 0.1 0.21 2.0 times Leather chemicals 0.1 0.51.0 5.0 times 117.
Surface active agents 0.3 0.7 2.5 times Surface coatings 0.5 1.5 3.0 times Speciality chemicals 0.1 2.0 20 times Source: TIFAC, Technology Vision 2020, Chemical Process Industry Table 6.4 indicates areas which are likely to provide major opportunities for innovation.
Speciality chemicals stands out, followed by polymers and fertilizers. The basic domestic demand would stabilize the minimum demand, thus enabling investments in R&D. With good R&D, these industries can venture into the export market.What is the chemicals technology vision?So far, the industry's growth has been based on imported process technology. However, the strong capabilities established in R&D, engineering and equipment manufacturing have led not only to the a.s.similation of imported technology but also to the development of indigenous technology. We have reached a level in certain areas (particularly in batch processes) where we are not only compet.i.tive but have achieved excellence. The capabilities in equipment manufacture and plant construction have made India a choice for certain chemical manufacturing facilities. The combination of a base of imported technology and capabilities built up indigenously led initially to product and process improvement. Equipment and engineering developments also contributed towards continuous improvements in process technology and engineering to optimize efficiency and reduce emissions and waste products. Despite remarkable growth and diversification in the chemical industry, our technological strengths in process design and engineering have been poor. We have and are depending upon imported process technologies to a very large extent.
The demands are now for cleaner process with total recycling and recovery for highly energyefficient, tailormade products a s.h.i.+ft from batch to continuous processes and for increased automation.
The target for Indian industry and inst.i.tutions is to achieve their own processing technologies for most of their products by 2020. A mastery of the science and engineering of catalysts is imperative. The country should be capable of designing higher capacity and low energy consumption processing machines, and exporting them as well.
118.
Indian chemical technology can also aspire to be one of the leaders in generating environmentally clean and safe products, which would mean zero waste technologies in addition to total recycling capabilities. We should also to innovate newer applications.
A new area is emerging which draws on the convergence of chemistry and biology in some sectors. India should prepare to reap rich benefits from this development.
Biologically catalyzed processes for production of fine organic chemicals and pharmaceuticals will be a force to reckon with by the turn of the century. Bioengineering systems will be used to dispose of hazardous waste and also to generate valuable by products. The technologies invoved are biocatalysis, bioengineering system, biomolecular materials and biomaterials.Engineering bacteria and other organisms to synthesize monomers , polymers, pharmaceutical and other chemicals is now possible, as is synthesis of olyphenylenes using bacteria and benzene. Bioorganisms will be utilized to carry out the elaborate sequences of organic reactions that convert simple building blocks into complex natural products in aqueous environments close to room temperature. Many natural products which were replaced with synthetic subst.i.tutes would reappear as a result of genetic engineering and other biotechnology techniques for higher efficiency and cleaner process conditions.Some of the areas indicated above provide India with the opportunity to play a leading role in this industry. That is the vision we need to capture of actions.As can be seen from the earlier parts, the field covered by the chemicals industry is very large. It offers many opportunities but is at the same time subject to restrictions placed by environmental considerations. It is vulnerable to constraints imposed by intellectual property rights regimes. If action is taken in advance , the threats can be converted into opportunities. Figures 6.1, 6.2and 6.3 attempt to encapsulate the vision for this vast sector. A few elements such as petroleum and natural gas, speciality chemicals, polymers and petrochemicals are addressed in these figures.
The left side describes the current scenario and the right side gives the vision for 2020.
Biodiversity and national wealth We have just seen how biotechnology is going to affect future chemical technologies, and how much it can help in agriculture 119.
120.
121.
122.
and the agrofood processing sectors. Much more is in store.
In our search for a developed India our rich biodiversity appears to be one of our significant research bases. Let us look at figure 6.4,which is the Biodiversitytechnology matrix.
It is somewhat ironic in that in human history most countries which are rich in biodiversity have been by and large poor, while affluent and technologically advanced countries are poor in bioresources! India is in a unique position. We are rich in bioresources and have a sound technological and industrial base, but this has to be further strengthened. If only we could capture the wealth of these biological resources through the a.s.siduous application of technology, we could easily become an economic power to reckon with. If we do not capitalize on ourtechnological and industrial strengths to tap our rich biodiversity, and depend on the West for our biodiversity will flow to the developed world. We may end up deriving only marginal benefits. Also India can easily reach quadrant 2 in theFigure 6.4 as with the wealth so generated from our eco resources, it can invest in other areas of technologies as well.
The applications drawn from the life sciences are going to affect almost all walks of economic and social life in the coming years. Biosensors are likely to be used to monitor environmental pollution or in the a.n.a.lysis of blood or to judge a fruit's ripeness.
Computational systems closer to the operation of the human brain are likely to emerge in future. These apart, there are a number of potentially significant applications in agriculture, health care, marine and industrial sectors. Herbal medicines and marine products are likely to emerge as huge areas of income generation and employment.
123.
The rediscovery of traditional knowledge bases The benefits of modern science may not have reached all parts of the world but there is a far greater awareness of these among people. People are now demanding more equitable Share of the fruits of modern knowledge and skills.In India too the benefits of scientific and technological breakthroughs have not reached all segments of our society.Until this happens, we cannot claim that India is truly a developed society. We echo the feeling of what the national poet Subrahmanya Bharathi wrote in Tamil: 'If a single man does not have food to eat, we will destroy this world.'
The quest to ensure that such benefits reach all has led to an important development, especially during the latter half of the twentieth century: that is, the breakdown of dogmas regarding the origin of knowledge. Earlier, advocates of thescientific approach scorned the many skill and knowledge from ancient societies on the grounds that they were not completely rational and empirically proven . Even the elite from the ancient societies, which were mostly underdeveloped,ignored these older skills and knowledge base. The rush for development was synonymous with imitating some developed nations.The explosive growth of technologies and the resultant environmental and other problems led many thinkers, scientists and technologists to question the singletrack approach to knowledge. Many of the ancient the knowledge bases, such as tribal societies, are being revisited. Large amounts of data on traditional systems of medicine, the use of herbs, and even metallurgy has been gathered. After the a.n.a.lysis of possible patterns in these data, modern scientific methodologies and new technological means can be used to considerable' value add' to ancient knowledge and experience. This is what we see in the spate of inventions around neem or tamarind or turmeric or basmati rice. Similarly, the knowledge base of other civilizations is also being extensively utilized: Chinese acupuncture techniques are being used the world over.
Serious studies of Sanskrit are being undertaken for possible applications to computer language. It is noteworthy that developed countries, many of which themselves are not rich in biodiversity, are taking a lead in such studies. Since the developed countries jealously 124.
125.
protect their intellectual property rights and trade secrets, they have ensured a lead in these areas as well.
An officer in Andhra Pradesh who was in charge of tribal development found that the tribals put certain gums and wood materials in turbid water to make the water clear.
Apparently some chemical or physical action takes place which absorbs the materials that make the water turbid. Being curious, this officer asked some scientists he knew to study the materials. After experimentation they found that the materials used by the tribals even had the property of absorbing heavy minerals such as nuclear metals. The officer wanted to pursue the investigation further. As often happens in our system, he faced resistance.
He tried to approach a few laboratories which did not respond. A foreign university showed interest. What the officer established was that a new technology based on tribal knowledge was a viable proposition. The case of sarpagandhi is another example. The ancient knowledge of this plant led to the invention of Serpasil, which is used for controlling blood pressure.