Part 10 (1/2)

India 2020 A.P.J. Abdul Kalam 140380K 2022-07-22

The buildings of the future will have many few features of aesthetics and convenience. Many houses may have builtin flat panel displays for entertainment, business or educational information. Their energy souces will be claeaner, based on solar power or hydrogen. The gla.s.s panes of windows and doors may have conducting polymers to regulate transmission of solar rays into the room. The leakages during the monsoon may be a thig of the past due to improved design and construction methods.

Above all, the time taken for construction of houses and buildings may be cut down to several weeks or a few months, instead of years. This would be achieved through the use

97.

of prefabricated structures and various other factorymanufactured parts like advanced composites doors.

Cement will continue to be a dominating building material. Its consumption will go up from 75 MT in 1995 to 115 MT in 2005. Natural aggregates are likely to predominate even beyond 2020 due to their easy availability. Concrete will continue to be an indispensable material of construction. Seel, too, will continue to be used as one of the major structural materials as well as for reinforcement in concrete. Fly ash produced by burning coal in electric power stations will be increasingly used along with cement as there is a need to conserve cement. The basic raw materials that go to make cement are not going to last long. Presently limestone, the princ.i.p.al input for making cement, is easily aviable with little effort required to mine it. However, such limestone reserves may last only a century. Then we may have to dig deeper, which means more cost. Therefore, the use of fly ash is required not only as an environmental protection measure but for conserving natural resources.

The Government of India has mounted a major technology demonstration project for fly ash utilization. This mission Mode project was the result of earlier work by TIFAC and is now being implemented by it along with many national and state government agencies as well as industries and inst.i.tutions. In many parts of India, there are successful examples of the use of fly ash.

The first was for the Okhla flyover bridge which is operating successfully. This success led to its use for another bridge, the Hanuman setu. The central and Delhi governments have also cleared the construction of a 1.7 km approach road connecting a new bridge at Nizamuddin. New Delhi to NOIDA WHICH USES FLY ASH. Another project for construction of a 1 km road using fly ash has strated at Panipat. The construction of foru dwelling units at the abandoned fly ash pond of the National Fertilizers Ltd(NEL) at panipat has been successful, and they have been tested through a monsoon season. The results indicate that a structure up to four storeys high can be safely and economically erected at abandoned ash ponds, However,intial testing og the site is required as is usually done for regular soil as well.

Among other success with fly ash is a 1 km road near Raichur which is operating well, and a road in New Bhuj, Gujarat. Road building through the use of fly ash has been

98.

standardized with these experiments, and draft specifications have been prepared for submission to the Indian Road Congress. There are other uses of fly ash, as in the underground mine fill demonstrated at Ramagundam. Several othe projects aimed at agricultural applications are underway. Photonic materials: The development of electronics in Indian is recent and has marked a revolution in industrialization and economic growth, besides adding to human comforts. Most of the modern technological 'miracles' are due to electronics, that is, controlling the flow of electronics. The growth of electronics has led to newer and grater demands: of the amount of data to be transferred much higher resolutions of transmitted pictures many more parameters to be measured and so on. These demands have led to the mastery of 'control of photons', that is, the 'particles of light'. Lasers and fibernoptics fall in the category of photonics. While there is considerable knowledge of electronics, optics and software are involved in the applications of photonics, and the basic devices and a.s.semblies need very advanced engineering of materials, process engineering and design methods.

Photonics will dominate all walks of life in the twentyfirst century. It will penerate into several areas tradinationaly covered by electronics such as communications, computation, memories etc. It will have farreaching effects in several critical areas such as information technology, fiber opticsbased telecommunication, diagnostics and therapeutic applications in health care, pollution control,life sciences, besides others.

Developments in photonic materials will accordingly keep pace. There will be new developments in laser materials. Newer compounds and rare earths will a.s.sume great importance for electroluminescence applications. India's missle programme uses many of these materials for missile guidance. They are also used in aircraft transfort systems and satellites. A new cla.s.s of phosphors may revolutionize display technology. Opto electronic systems will increasingly use polymers. While it is difficult to consumers can expect better and larger TV pictures, new lighting sources, new medical diagnostic devices, while communication facilities will be more easily accessible than peresentday India's water taps!

Superconducting materials: We all know that the cost of generating electricity is high. In India, a policy of subsidizing electricity has kept the rates down. There is an increasing

99.

tendency, for sound economic reasons, to reduce such subsidies and let the price of electricity be marketdetermined. But the consumers naturally would not like to pay for the inefficiencies in generation of electricity nor for the losses in transmission. There are increasing pressures to introduce better and wellproven technologies to improve efficiency in power generation. We have, overall, one of the lowest indicators of power generation efficiency in th world.

In addition, our transmission and distribution losses are high. Some, called 'non technical', is piferage of power. But a good part of it is also due to use of poor technologies in transmission line materials and transformer materials. Not that earlier there weren't people with knowledge, or that there were no technologies to overcome this problem. But somehow, most of these avenues were callously ignored. Now sheer economics is taking over with pressure on the power sector to perform. So it is likely that most of the new wellproven technologies will be used in transmission lines and transformers to reduce losses. In advanced countries, the emphasis on efficiency and cutting down losses has led to the experimental use of superconducting materials as wires. These can be considered the ultimate in the use of electronics, with practically no hindrance to their flow, meaning practically no losses. India has invested a considerable amount in building up a scientific base. Now it is a question of orienting this scientific work to commercial products of the future. As is ture with most generic high technologies, there are applications of superconductors in the medical and industrial sectors as well.

Lowtemperature superconductors (LTSC) with improved performance will have to be developed. Indigenous development of superconducting cyclotron and Xray synchrotron would take place. These equipemts are useful for medical and industrial applications. Superconducting genertators with 5MVA field, magnetic seprators with field strengths greater than 3.5T would be commercially built in India. Multi SQUID arrays will be developed for medical diagnostics.

SQUIDs based on hightemperature superconductors (HTSC) will be developed and used for noninvasive diagnosis of disease, biomedical investigations, Non Destructive Testing (NDT) of oil pipes, bridges, etc. HTSCs will work their way into microwave communication, energy storage devices, sensing and electromagnetic devices

100.

for face exploration, highspeed computers, etc. HTSCs will facilitate the building of smaller and less energyconsuming Magnetic Reasonance Imaging (MRI) devices. Yet another dream is a superconducting train.

Polymeric materials: Just as electronics and photonics are the marvels of modern physics and materials technology, modern chemistry has given birth to a whole range of polymers. For a simple understanding we may look at the range of plastic products. The solid propellants used in launch vehicles and missiles are also a type of polymer, as also the foam beds we sleep on or the special soles in our footware. Polymer are an integral part of modern life. The polymer industry in India will grow at 1520 per cent up to the year 2000 and at 10 per cent thereafter. Commodity plastic production will increase from current 1.7 MT to 4.5 MT by the year 2000. Elastomers and synthetic rubber will grow at the expense of natural rubber. There will be a large usage of ecofriendly(biodegradable, nontoxic) polymers.recycling/reprocessing of waste plastics will a.s.sume great significance. Newer inventions in polymers such as conducting polymers are knocking at the doors of bioelectric devices and systems. The future will see many exciting applications of polymers.

Nuclear materials: Most of us have tended to a.s.sociate anything nuclear with the bomb and to a certain extent with poer generation, Use of nuclear energy has placed considerable demands on advanced materials technologies and spinoffs from them are very many.

Let us review the future of nuclear material. The Nuclear Power Corporation plans to set up seven more plants of 2100 MW by the year 2000 and seventeen more by 2020 to raise the total installed capacity to about 20000 MW. There could be other ent.i.ties setting up nuclear poer plants as well. The requirement of nuclear material will accordingly go up. Monozite production would increase to 8000/9000 TPY at Manavalakurichi, Tamil Nadu, alone. There will be demands to enhance the facilities to meet the increased requirements of zirconium alloy and uranium dioxide(UQ ) fuel. The

2.

largescale production of reactor grade hafnium oxide and its conversion to hafnium (HF) metal will be taken up to keep pace with increasing demands, Newer zirconium alloys would be designed for fuel cladding applications with better corrosion/radiation 101.

resistance. The spinoff from nuclear technologies could form the basis of the emergence of major industries. Let us see one example of such a spinoff. Zirconium is an important material used in nuclear reactors. One of its compounds used along with another material called Yttirium and processed in a special manner, results in a product called cubic zirconium. This is nothing but the artificial diamond, popularly known as'American diamond', and is used in jeweller y.

Biomaterials and devices: India can be truly proud of having made at affordable costs some very demanding biomedical products: blood bags, heart valves and KalamRaju stents, to pame a few .However, the advancement in biomedical R&D or industry has not fully kept pace with the evergrowing demands.therefore, several industries will be set up in the country with imported technology for the manufacture of medical devices.

Polymers, ceramics and metal alloy industries would upgrade themselves to produce the required biomaterials.Medical and health care sectors will undergo a major transformation with increased availability of artificial organs,blood and improved diagonistic devices. For example, implantation of artificial human parts will be possible the heart, the pancreas , the lungs, and kidneys. Artificial blood will be available for transfusion to leukaemia patients. Bone, hip and tissue replacements will be possible for accident victims.Heart patients can receive heart valves , artificial hearts and other implants. The requirements of biomaterials would accordingly go up. Tissue engineering will aim at replacing the affected tissue in a natural way.The challenge is to shape products, devices and systems in order to make them affordable to a large number of Indians. It is not merely a matter of cost engineering. Innovative technological inputs are called for.

Surface engineering: So far we discussed materials, alloys and composites. A new generic area of technology is emerging in a major way during the past decade. This involves treatment of a metal or material with an extremely thin layer of another material to get he benefits of both materials! The Teflon coating of a frying pan is a simple example. More sophisticated atomic level costings are used to reduce the wear and tear of tools and moving parts of machinery. Diamond coatings can be made on some materials. Simply stated, the future holds a promise of a customer demanding and getting a specific combination of various, often contradictory perfomance parameters: of light 102.

weight, least corrosivity, biocompatibility or least cost. There are several technologies like thermal spraying or plasma spraying or laser treatment. A laser surface engineering center has been established at the Defence Metallurgical Research Laboratory (DMRL) campus at Hyderabad. New methods are being invented. It is fortunate that India has good R&D strengths in this area. A few Indian industries have forged partners.h.i.+ps with global technology leaders and Indian inst.i.tutions, to take a leading role commercially. We believe India can emerge as an important player at the commercial level in the use and generation of surface engineering technologies.

Investments :.

In the earlier chapter on agriculture and agrofood processing, there are suggestions for many measures ranging from education and sensitization of farmers to successes within the country itself to bringing in new agricultural practices, new hybrid seeds and establishment of cold chain and food processing units. What about investments? We believe that much of the governmentlevel investment (such as public information, Awareness generation and covering risks for the early experiments) can be done within the existing budgets of the Central and state governments. Perhaps a seed fund to catalyze actions can be specially created to break the 'ice'. Much of the other investments can be specially created to, these investments will flow as they involve several small to medium level decentralized actions. For items like cold chains and carriers even foreign investment could be attracted. The main effort is to shed the present state of lethargy and cynicism that 'nothing can be done in India, nothing can change Bihar or UP'.We have to combat this trend and transform the neglected areas. Investment levels required for the materials sector are of a different cla.s.s. As described earlier, many decentralized, small and medium levels of investments would be the dominant pattern in the agricultural sector. But for production of steel or aluminium or t.i.tanium , huge investments running to several hundred crores of rupees. The gestation period for return on investments would be much quicker. For material processing technologies like surface engineering , there can be dramatic return on investments even for investments under ten crores of rupees . India has to find methods of attracting largescale investments for production of steel, aluminium and t.i.tanium as well.For example, the annual world production in steel is now 103.

750 million tonnes and is expected to be 980 million tones by 2010. It may perhaps rise to 1200 million tonnes by 2020. India's current steel production is 24 million tonnes and is likely to be 60 million tonnes by 2010. Compare this with china's present production of around 100 million tonnes and south korea's 30 million tonnes!j.a.pan, the USA and Russia are there too as giant steel producers. The investment required for one million tonne steel plant on a Greenfield site is about Rs.3000 crores. Besides, none of the Indian steel industry or steel R&D outfits have produced something very unique, which would not just make us proud but would make steel better and cheaper.However, when we consider some of the details about the types of talent in the business and technological areas, we believe we do not need to be pessimistic. The Indian business and technological community has to learn to think innovatively: for example, avoid Greenfield sites, upgrade the existing ones, sc.r.a.p obsolete ones, learn the relevant foreign technologies, go in for foreign investment or preferably joint ventures in the country or abroad, concentrate on giving better products to the growing domestic and world consumers.

While doing all these in the short term, we should not stop at the first success and stagnate thereafter as we did after our intial successes in steel plants, especially after Rourkela. Our technological community in industry and inst.i.tutions can be activate to help the big and smallsized steel producers: all actions to improve the efficiency of operations, all actions to introduce new products new performance features. Even amidst the fierce compet.i.tion between our companies, they can evolve consortia mode to share their knowledge base to enhance india's business abroad. In addition to the total volume of production , India can also make its mark in certain special niche markets where value addition is more. India, with all the above actions, has to aim to be a top steel producer in the world by 2020.Its status can be much higher than what it is today. I continue to hope that indian material scientists shall introduce an Indian alloy to the world.The picture concerning t.i.tanium may appear much bleaker. present annual world production is around 0.1million tonnes (USA20 per cent,Russian and CIS countries52 per cent, j.a.pan26 per cent). India is just about 100 tonnes per year, mostly of the milled products based on imported sponge in a country which is tops in t.i.tanium ores! Some estimates are that India can target for an annual production of 5000 tonnes. After about a decade of discussions and delays, a new plant to produce 400 tonnes t.i.tanium sponge from our own ore is being planned to be set up at Palaykayal in south India.

104.

It may cost about Rs.100 crores. There are many potential usres in India for t.i.tanium in the private sector as well. We believe this situation concerning t.i.tanium has to change. We understand that the Department of atomic energy and DRDO are planning to set up a t.i.tanium sponge production plant. Many others may follow suit. These are detailed technological and business decisions which we would like to leave to adventurous and entrepreneurial Indians. But our strengths in t.i.tanium can help us in many other business as well. For example, it can make India a preferred production base for several world chemical plants. Imagine the level of new employment such possibilities can bring in! Let us learn to think big. What is the government's role in this? First of all to provide an enabling environment and remove a number of bureaucratic hindrances. Allow new ent.i.ties to come in without 'applywait' mode. Free the technical agencies to loan their experts on a Longterm basis to Indian industries. Help industryoriented research out with various developmental funds, which are marginally utilized or used for purchase of equipment.

i The v sion and actions To avoid too much of technical discussions, we have only provided glimpses of possibilities in thirteen areas of modern materials. To further facilitate understanding we have tried to encapsulate the vision in four figures for steel, aluminum, t.i.tanium, and rare earth (figures 5.1, 5.2, 5.3, 5.4). The left side gives the present scenario and the right side gives the future one. The center box highlights a few core technologies that needs to master. India can be one of the key leaders in all these sectors commercially and technologically. It will generate lots of wealth for the nation and employment of highly skilled personnel. Export earnings will be substantial.

Indian companies may set up ventures abroad in many of these areas and export technologies as well. Some shortterm actions require investments by the government and private sector. To attract the private sector, certain policy changes are required Such as providing the sector with longterm development and commercial contracts in strategic sectors and allowing it the use of expertise available in the national laboratories in a speedy manner and on easy terms.

105.

106.

107.

108.