Part 11 (1/2)

Professor Clifford has informed the writer that the tests on bent rods to which he refers were made on 3/4-in. rounds, embedded for 12 in. in concrete and bent sharply, the bent portion being 4 in. long. The 12-in.

portion was greased. The average maximum load necessary to pull the rods out was 16,000 lb. It seems quite probable that there would be some slipping or crus.h.i.+ng of the concrete before a very large part of this load was applied. The load at slipping would be a more useful determination than the ultimate, for the reason that repeated application of such loads will wear out a structure. In this connection three sets of tests described in Bulletin No. 29 of the University of Illinois, are instructive. They were made on beams of the same size, and reinforced with the same percentage of steel. The results were as follows:

Beams 511.1, 511.2, 512.1, 512.2: The bars were bent up at third points.

Average breaking load, 18,600 lb. All failed by slipping of the bars.

Beams 513.1, 513.2: The bars were bent up at third points and given a sharp right-angle turn over the supports. Average breaking load, 16,500 lb. The beams failed by cracking alongside the bar toward the end.

Beams 514.2, 514.3: The bars were bent up at third points and had anchoring nuts and washers at the ends over the supports. Average breaking load, 22,800 lb. These failed by tension in the steel.

By these tests it is seen that, in a beam, bars without hooks were stronger in their hold on the concrete by an average of 13% than those with hooks. Each test of the group of straight bars showed that they were stronger than either of those with hooked bars. Bars anch.o.r.ed over the support in the manner recommended in the paper were nearly 40% stronger than hooked bars and 20% stronger than straight bars. These percentages, furthermore, do not represent all the advantages of anch.o.r.ed bars. The method of failure is of greatest significance. A failure by tension in the steel is an ideal failure, because it is easiest to provide against. Failures by slipping of bars, and by cracking and disintegrating of the concrete beam near the support, as exhibited by the other tests, indicate danger, and demand much larger factors of safety.

Professor Clifford, in criticizing the statement that a member which cannot act until failure has started is not a proper element of design, refers to another statement by the writer, namely, ”The steel in the tension side of the beam should be considered as taking all the tension.” He states that this cannot take place until the concrete has failed in tension at this point. The tension side of a beam will stretch out a measurable amount under load. The stretching out of the beam vertically, alongside of a stirrup, would be exceedingly minute, if no cracks occurred in the beam.

Mr. Mensch says that ”the stresses involved are mostly secondary.” He compares them to web stresses in a plate girder, which can scarcely be called secondary. Furthermore, those stresses are carefully worked out and abundantly provided for in any good design. To give an example of how a plate girder might be designed: Many plate girders have rivets in the f.l.a.n.g.es, s.p.a.ced 6 in. apart near the supports, that is, girders designed with no regard to good practice. These girders, perhaps, need twice as many rivets near the ends, according to good and acceptable practice, which is also rational practice. The girders stand up and perform their office. It is doubtful whether they would fail in these rivet lines in a test to destruction; but a reasonable a.n.a.lysis shows that these rivets are needed, and no good engineer would ignore this rule of design or claim that it should be discarded because the girders do their work anyway. There are many things about structures, as every engineer who has examined many of those erected without engineering supervision can testify, which are bad, but not quite bad enough to be cause for condemnation. Not many years ago the writer ordered reinforcement in a structure designed by one of the best structural engineers in the United States, because the floor-beams had sharp bends in the f.l.a.n.g.e angles. This is not a secondary matter, and sharp bends in reinforcing rods are not a secondary matter. No amount of a.n.a.lysis can show that these rods or f.l.a.n.g.e angles will perform their full duty.

Something else must be overstressed, and herein is a violation of the principles of sound engineering.

Mr. Mensch mentions the failure of the Quebec Bridge as an example of the unknown strength of steel compression members, and states that, if the designer of that bridge had known of certain tests made 40 years ago, that accident probably would not have happened. It has never been proven that the designer of that bridge was responsible for the accident or for anything more than a bridge which would have been weak in service. The testimony of the Royal Commission, concerning the chords, is, ”We have no evidence to show that they would have actually failed under working conditions had they been axially loaded and not subject to transverse stresses arising from weak end details and loose connections.” Diagonal bracing in the big erection gantry would have saved the bridge, for every feature of the wreck shows that the lateral collapse of that gantry caused the failure. Here are some more simple principles of sound engineering which were ignored.

It is when practice runs ”ahead of theory” that it needs to be brought up with a sharp turn. It is the general practice to design dams for the horizontal pressure of the water only, ignoring that which works into horizontal seams and below the foundation, and exerts a heavy uplift.

Dams also fail occasionally, because of this uplifting force which is proven to exist by theory.

Mr. Mensch says:

”The author is manifestly wrong in stating that the reinforcing rods can only receive their increments of stress when the concrete is in tension. Generally, the contrary happens. In the ordinary adhesion test, the block of concrete is held by the jaws of the machine and the rod is pulled out; the concrete is clearly in compression.”

This is not a case of increments at all, as the rod has the full stress given to it by the grips of the testing machine. Furthermore, it is not a beam. Also, Mr. Mensch is not accurate in conveying the writer's meaning. To quote from the paper:

”A reinforcing rod in a concrete beam receives its stress by increments imparted by the grip of the concrete, but these increments can only be imparted where the tendency of the concrete is to stretch.”

This has no reference to an adhesion test.

Mr. Mensch's next paragraph does not show a careful perusal of the paper. The writer does not ”doubt the advisability of using bent-up bars in reinforced concrete beams.” What he does condemn is bending up the bars with a sharp bend and ending them nowhere. When they are curved up, run to the support, and are anch.o.r.ed over the support or run into the next span, they are excellent. In the tests mentioned by Mr. Mensch, the beams which had the rods bent up and ”continued over the supports” gave the highest ”ultimate values.” This is exactly the construction which is pointed out as being the most rational, if the rods do not have the sharp bends which Mr. Mensch himself condemns.

Regarding the tests mentioned by him, in which the rods were fastened to anchor-plates at the end and had ”slight increase of strength over straight rods, and certainly made a poorer showing than bent-up bars,”

the writer asked Mr. Mensch by letter whether these bars were curved up toward the supports. He has not answered the communication, so the writer cannot comment on the tests. It is not necessary to use threaded bars, except in the end beams, as the curved-up bars can be run into the next beam and act as top reinforcement while at the same time receiving full anchorage.

Mr. Mensch's statement regarding the retaining wall reinforced as shown at _a_, Fig. 2, is astounding. He ”confesses that he never saw or heard of such poor practices.” If he will examine almost any volume of an engineering periodical of recent years, he will have no trouble at all in finding several examples of these identical practices. In the books by Messrs. Reid, Maurer and Turneaure, and Taylor and Thompson, he will find retaining walls ill.u.s.trated, which are almost identical with Fig. 2 at _a_. Mr. Mensch says that the proposed design of a retaining wall would be difficult and expensive to install. The harp-like reinforcement could be put together on the ground, and raised to place and held with a couple of braces. Compare this with the difficulty, expense and uncertainty of placing and holding in place 20 or 30 separate rods. The Fink truss a.n.a.logy given by Mr. Mensch is a weak one. If he were making a cantilever bracket to support a slab by tension from the top, the bracket to be tied into a wall, would he use an indiscriminate lot of little vertical and horizontal rods, or would he tie the slab directly into the wall by diagonal ties? This is exactly the case of this retaining wall, the horizontal slab has a load of earth, and the counterfort is a bracket in tension; the vertical wall resists that tension and derives its ability to resist from the horizontal pressure of the earth.

Mr. Mensch states that ”it would take up too much time to prove that the counterfort acts really as a beam.” The writer proposes to show in a very short time that it is not a beam. A beam is a part of a structure subject to bending strains caused by transverse loading. This will do as a working definition. The concrete of the counterfort shown at _b_, Fig.

2, could be entirely eliminated if the rods were simply made to run straight into the anchoring angle and were connected with little cast skewbacks through slotted holes. There would be absolutely no bending in the rods and no transverse load. Add the concrete to protect the rods; the function of the rods is not changed in the least. M.S. Ketchum, M.

Am. Soc. C. E.,[U] calculates the counterfort as a beam, and the six 1-in. square bars which he uses diagonally do not even run into the front slab. He states that the vertical and horizontal rods are to ”take the horizontal and vertical shear.”

Mr. Mensch says of rectangular water tanks that they are not held (presumably at the corners) by any such devices, and that there is no doubt that they must carry the stress when filled with water. A water tank,[V] designed by the writer in 1905, was held by just such devices.

In a tank[W] not held by any such devices, the corner broke, and it is now held by reinforcing devices not shown in the original plans.

Mr. Mensch states that he ”does not quite understand the author's reference to shear rods. Possibly he means the longitudinal reinforcement, which it seems is sometimes calculated to carry 10,000 lb. per sq. in. in shear;” and that he ”never heard of such a practice.”

His next paragraph gives the most pointed out-and-out statement regarding shear in shear rods which this voluminous discussion contains.