Part 7 (2/2)

Climate Code Red David Spratt 184060K 2022-07-22

Another structural flaw to carbon trading is that current systems don't include s.h.i.+pping and air-travel emissions, which are two of the fastest-growing emission sectors.

It's hard to avoid the impression that many of the pa.s.sionate advocates of carbon trading see it as a way to make a great deal of money from the process of trading pollution rights, rather than as a means to cutting emissions to zero, so that greenhouse-gas-emitting technologies become obsolete. As a September 2006 report from the Dag Hammarskjold Foundation concluded, 'With a bit of judicious accounting, a company investing in foreign ”carbon-saving” projects can increase fossil emissions both at home and abroad while claiming to make reductions in both locations.'

So does carbon trading have any role to play? It is not difficult to design a system that avoids most of the pitfalls mentioned. It must cover all emissions, have a sharp and clearly defined declining cap that fits the need for a rapid transition to a safe-climate economy, and it must include border protection, to stop responsibilities being exported to low-wage countries. Such a system would be better called 'cap and auction' rather than 'carbon trading', to emphasise its intended purpose. There are also compelling reasons why 'cap and auction' schemes should be kept within national borders, especially for high-polluting developed nations, so that emissions are cut within that economy, rather than the buck being pa.s.sed to a less-developed country.

Carbon trading has a part to play in our climate emergency, but it is not the main game. The emergency requires strong regulation and intervention in the market, which cannot respond by itself at the depth and speed required. It is also necessary to develop coordinated plans to build renewable-energy capacity and to improve energy efficiency, along with allied regulations to step down the use of coal and gas.

In the past, rule-based methods for reducing environmentally damaging substances, such as lead in petrol, were effective; but cutting total carbon emissions is more challenging, because fossil-fuel use is ubiquitous. Since the quant.i.ties of petrol and natural gas, for example, are subject to a declining cap as part of an emissions-reduction strategy, how do we allocate the right to their use between competing householders and other users? A tax rate may work, but it would be chronically inequitable. Rationing would be fairer, but a black market would emerge if the trading of rations did not have a legal and regulated basis. Carbon trading will occur, one way or the other, but it is not the primary strategy to rely on as the climate crisis deepens.

While the 'new business-as-usual' mode is, in many cases, a well-intended response to the emerging climate and sustainability crisis, it still involves avoiding the deeper nature of the crisis. The question then becomes: can we be brutally honest and doubly practical, and still get beyond 'business as usual', in either its traditional or new form, to build a truly sustainable society?

CHAPTER 21.

Climate Solutions.

If you look at many of the actions being taken around the world today - such as increasing energy-efficiency, building large-scale renewable-energy plants, or moving from private to public transport - it is easy to see that many perfectly workable solutions to global warming exist now. However, they are not the whole answer.

Climate solutions must complement solutions to other sustainability problems, such as water, food, and peak oil, at the same time as cooling the Earth by at least 0.3 degrees, compared to the present, as fast as is practically possible. To make this possible, three types of action are required.

The first is to stop adding to the upward pressure of temperatures by cutting human greenhouse-gas emissions to as close to zero as possible.

The second is to reduce the amount of carbon dioxide in the atmosphere, because even its present level will push temperatures higher than they are now, and will trigger positive feedbacks that add further warming. This may be achieved by allowing natural carbon sinks to draw down excess carbon dioxide from the air, and by adding large-scale human processes for capturing and storing excess carbon dioxide from the air. As an example, we could grow trees and other bioma.s.s on a large scale to make agricultural charcoal, which can be stored in soils while also adding to fertility.

The third action is to consider environmentally safe options that produce negative forcings, or change the energy imbalance in the climate system, to slow the peak rate of warming and bring the global cooling forward to the earliest possible time. Examples include promoting forest growth (which helps stimulate the creation of clouds), and increasing the growth of ocean algae (which draws down carbon dioxide and also helps stimulate cloud production). Other options that are still being studied to determine their environmental and technical suitability include the notion of seeding the stratosphere with sulphates to create a reflective layer.

Stopping additions to heating: cutting emissions to zero.

If you consider the range of sustaining technologies that has been created over the last 30 years through human innovation, it is clear that the options available for drastically cutting greenhouse-gas emissions are not beyond our collective capacity or imagination. Zero Carbon Britain, an alternative energy strategy that was released in 2007, finds that in 20 years the UK could produce 100 per cent of electricity without the use of fossil fuels or nuclear power, while also almost tripling electricity supply, and using it to power most heating and transport systems. A similar strategy for the United States is Carbon-Free and Nuclear-Free: a roadmap for US energy policy, a joint project of the Nuclear Policy Research Inst.i.tute and the Inst.i.tute for Energy and Environmental Research, which was published in 2007.

The failure, so far, to engineer energy use along sustainable paths is not a failure of technological or economic capacity, but of political and social will.

There are new, lightweight materials for vehicle construction, and household appliances that use a small fraction of the energy of those now in use. Carbon-neutral buildings do work, electricity from renewable sources is the fastest-growing energy industry, and hundreds of millions of people are moved by electric ma.s.s-transport every day. With high-speed electric rail and advanced telecommunications, we could manage without ma.s.s air travel. One study has estimated that the savings that would result from using telecommunications networks to conserve energy and to increase clean-energy use at home, in the workplace, and in the ways we connect people to be 5 per cent of total Australian emissions, with estimated energy and travel-cost savings of A$6.6 billion per year.

The key strategies to cut greenhouse-gas emissions to zero are resource efficiency, backed up by subst.i.tuting renewable energy for fossil-fuel sources. The integration of these strategies is ill.u.s.trated in two sectors: materials production, and transport.

Efficiency.

The greatest reduction in greenhouse emissions - and the most economically efficient - can be made through comprehensive, visionary efficiency programs for energy and other resources.

Investing in resource efficiency - which cuts the amount of materials needed to meet human needs - produces many side benefits, such as less ecological damage, less resource depletion, and fewer adverse impacts on human health. The greater the level of efficiency, the greater the benefit.

In California, energy-efficiency programs that have been implemented over recent decades have held electricity consumption per capita, roughly, at a constant, while overall per capita US consumption has almost doubled. A McKinsey Quarterly report says that a 50 per cent cut in energy use is feasible, using off-the-shelf technology. If we knew that the price of energy would double in say, five years, we could almost certainly double our efficiency.

McKinsey & Company's a.n.a.lysis for Australia, 'An Australian Cost Curve for Greenhouse Gas Reduction', was released in February 2008. It found that cutting emissions by 30 per cent by 2020 and 60 per cent by 2050 is achievable without incurring a major impact on consumption patterns or quality of life, and without major technological breakthroughs or lifestyle changes (by 'using existing approaches and by deploying mature or rapidly developing technologies to improve the carbon efficiency of our economy'). It estimates that by 2020 about 25 per cent of the total reduction can be realised with positive returns (actions that save, rather than cost, money): 'Most of these beneficial (or 'negative-cost') opportunities are energy-efficiency measures related to improvements in buildings and appliances.' Overall, the a.n.a.lysis found that the 2020 target could be achieved at an average cost of A$290 per household, compared to an estimated increase (by McKinsey) in annual household income of more than A$20,000 by 2020.

Friedrich Schmidt-Bleek founded the Factor Ten Inst.i.tute to provide practical support for achieving significant advances in sustainable production, in particular through increases in resource productivity throughout the economy. He says that an overall energy-efficiency improvement of up to 90 per cent is achievable with current commercially available technology.

The scandal is that sometimes the most energy-efficient domestic technologies and appliances are not even available in many countries, or businesses and consumers are not aware of their availability. On average, a refrigerator in the USA uses double the electricity of a refrigerator in Europe, which, in turn, uses four times the electricity of the most efficient refrigerator on the market (made in Turkey, and currently not even available in Australia). Compared to typical refrigeration in use today, leading-edge fridge technology with vacuum panel insulation can reduce energy needs by 8090 per cent, can cut typical peak loads by 100 watts per unit, and can avoid supply-side investment (in generating capacity) of A$200 per household, or A$1.5 billion for Australia as a whole.

World electricity demand could be cut by 25 per cent just by introducing market-leading appliance and lighting efficiency standards, while zero-emission homes and commercial buildings are now a reality. The UK government has legislated that from 2016 all new homes are to be zero emitters for heating and cooling, while large eco-towns are already being planned. The French government has made a commitment that all new buildings will be net energy producers by 2020, and the German government has a 20-year program to upgrade the nation's housing stock to meet high energy-efficiency standards.

Renewable energy.

A range of renewable-energy technologies is now available for power generation, and University of New South Wales researcher Mark Diesendorf says there is no technical reason to stop renewable energy from supplying all grid electricity. Is such a technological turnaround feasible in a short period of time? Rapid economic changes do happen surprisingly often. Between 1986 and 2001 the annual production of mobile phones rose from one to 995 million. Today, 160 million people in China get hot water from solar water heaters. One-third of the world's installed solar-panel capacity is on German houses, because of far-sighted government policies.

In Europe, wind power is widely utilised, and generating costs are falling. By 2020, wind is expected to be a compet.i.tive primary-energy supplier, whether or not there is a price on carbon emissions. In Denmark, the government plans to generate 75 per cent of national electricity needs through wind power by 2025. By 2010, Germany will have installed wind-power potential sufficient to generate the equivalent of 40 per cent of Australia's current electricity needs.

As the scale of production increases and costs continue to decline, solar photovoltaic (PV) energy may become the cheapest source of energy in many locations, because it can bypa.s.s ageing and fragile electricity grids and deliver power directly to the end user, fundamentally changing the underlying economics of energy. Germany's PV revolution means that more than 400,000 German homes have installed solar panels; with the current growth-rate of installations, Germany plans to be installing over one million solar electric units per year on house rooftops by 2010. As the scale of PV increases and innovation continues to reduce panel prices by, perhaps, half in the next decade or so, an energy-efficient Australian home might be made, essentially, self-sufficient in electricity, for only A$10,000 to A$15,000. This is comparable with the current cost per house of building generating and power-line electricity supply, using large, centralised, coal-fired power stations.

When the cost of coal-fired electricity increases, because of carbon-emissions pricing and trading, the economics of household PV installations will improve further. The next generation in solar technology, developed in Australia, is the sliver-cell solar cell, which is more efficient while using less silicon, which is very expensive. This would bring the cost down dramatically and revolutionise the uptake of PV solar energy, but its development is currently stymied by a lack of research support from the government.

By far the lowest cost option for solar electricity is solar-thermal technology - or concentrating solar thermal power (CSP) - which uses the sun's radiation to heat fluids that carry the thermal capacity to generators. The best-recognised installations of CSP, to date, are in the Californian desert, where extended rows of cylindrical-parabolic collectors concentrate the sun's rays towards long, fluid-filled pipes.

The Club of Rome, the global think-tank and centre of innovation that produced the agenda-setting report Limits to Growth in 1972, has now joined with the Trans-Mediterranean Renewable Energy Cooperation to propose a bold new energy scheme for Europe that uses CSP. The new proposal is for the fast deployment of CSP technology in desert areas of North Africa and the Middle East, and to link the European, North African, and Middle Eastern electricity markets, using new technology and low-loss transmission grids, which will be able to supply 90 per cent of electricity requirements. Such 'additional strong and determined emergency measures' are now required, they argue, because 'it is now too late to achieve the required U-turn with a business-oriented slow transition to low/no carbon technologies'.

The technology is on the cusp of some remarkable scale-up breakthroughs, such that it is predicted to be cheaper than coal within five years. An area of solar thermal collectors that is 35 kilometres square in a high-irradiance area would produce enough electricity to meet Australia's total power needs.

There is also great capacity in Australia for generating bioelectricity (electricity derived from bioma.s.s). A September 2007 report found that by 2020 bioelectricity could deliver the equivalent of 8 per cent of the electricity generated in 2004, with most bioma.s.s coming from 'wheat stubble, plantation forest waste, sugar plantation waste, and oil mallee'. The report explains that these are promising sources, from which 'no land is transferred from food production to bioenergy production. Indeed, oil mallee can help to combat dry-land salinity and hence will make more land available to food production'.

Other renewable technologies - such as geo-thermal energy, and wave and tidal power - will all play growing roles in eliminating the use of fossil fuels in the economy. Iceland, for example, now heats close to 90 per cent of its homes with geothermal energy. With economies of scale, continuing innovation, the introduction of a reasonable price on carbon emissions, and the impact of climbing oil prices, renewable-energy technologies will become the most cost-effective means of producing electricity.

Materials production.

In industry, efficiency programs are reducing greenhouse-gas emissions from energy use by as much as 80 per cent, by using smart technologies, new processes and materials, co-generation, and by relocating production. Increasingly, lower-impact subst.i.tutes are being produced for materials such as aluminium, cement, and steel, which require large energy inputs during production. Alternatives to traditional cement and concrete, for example, include geopolymers (alumino-silicate products created from clay-like materials); magnesium cement; fillers, such as ground-waste gla.s.s, instead of concrete; the use of lightweight construction techniques; and additives that increase strength and allow a lower volume of concrete to be used. In both the aluminium and steel industries, options include greater use of recycled materials, carbon-fibre composites, high-strength alloys, and optimising design to reduce the quant.i.ty of material required.

Five broad strategies can be applied to the energy-intensive materials sector, especially to metal and cement production.

The first is to redesign the products and the platforms that deliver services, along with their a.s.sociated supply chains, so that their production and use needs less material. Designing products, buildings, and infrastructure to use less material depends on a range of strategies, such as enabling long life, re-use, and effective maintenance and repair, and also 'lightweighting', which is the strategy of using the minimum amount of material and weight necessary to achieve a structure or purpose. Lighter vehicles, for example, use less fuel, lighter buildings need less material to support, and lighter products need fewer resources to manufacture, and less effort to dispose of them.

Lightweighting has been employed increasingly since the 1970s oil crisis. Previously, a heavy weight was thought to correlate with strength, reliability, longevity, and quality; now, a lighter weight is thought to correlate with sophistication and quality.

The second is to recycle materials in an energy and materials-efficient way, to recover discarded materials. Nature's systems have evolved to achieve extraordinarily high recycling rates. For example, carbon recycling in natural systems is more than 99 per cent. The scale of the human economy is now so huge that the same imperatives to recycle exist; for example, the explosive growth in the production of mobile phones is leading to a critical shortage of the geological reserves of some of the rare minerals used in the advanced electronics. Recycling is beginning to look like the only way to keep the mobile phone sector viable. Generally, much more energy is required to create virgin resources than to create recycled resources. To tackle the climate issue, a great deal of physical transformation needs to occur - inefficient buildings, cars, products, and infrastructure will need to be retrofitted, or replaced, in a relatively short period of time. This could involve a large new burst of carbon dioxide release, unless old materials are efficiently recovered from the sc.r.a.pped a.s.sets and are recycled into new a.s.sets.

The third strategy is to subst.i.tute materials that have lower-embodied climate impact (where this improves the performance of the system as a whole). Subst.i.tution can make big cuts in greenhouse emissions; for example, by subst.i.tuting geopolymer cement, very high extender-content cement, and magnesium-based cement for traditional calcium-based cement, which is very energy-intensive to produce, accounting for around 4 per cent of global carbon dioxide emissions. As another example, in areas in which lightweighting is critical, like car manufacture, steel can be replaced with carbon fibre from renewable sources. 'Petroleum' products (a range of chemicals and plastics) made from compounds sourced from plants can also be subst.i.tuted in place of fossil-fuel-derived petrochemicals.

The fourth strategy is to switch energy sources used in the production of each particular type of material. Remote-area mining and mineral processing operations are beginning to identify opportunities to use solar, wind, and geothermal energy. Australia faces a strong challenge in the production of aluminium because it is one of the few places in the world where the industry is almost entirely dependent on electricity from coal-fired power stations. Elsewhere it is largely produced using hydro or geothermal power or fossil-fuel gas power. As the world s.h.i.+fts away from fossil-fuelled energy, all materials will be made using climate-safe energy sources.

The fifth strategy is to use long-lasting materials as a way of sequestering excess carbon from the air. In some situations it is possible to sequester some of the excess carbon from the air into materials that can be recycled 'endlessly', or into products that have very long lives. Carbon dioxide from the air, for example, can be trapped through plant growth, and the plant material can be processed to make char, which can replace carbon from the coal used in steel manufacture. In this way, steel becomes a storehouse for excess atmospheric carbon.

In practical settings, these five strategies are usually combined to create the maximum impact. During the transition to a safe-climate economy, it will be important to coordinate the changes so that perverse results are not produced. Lots of cement and concrete are needed during an intense structural-change period, for example, and it would be counterproductive if we were to cause greenhouse-gas emissions to rise rapidly while we attempted to replace inefficient or inappropriate products, buildings, and infrastructure according to an accelerated schedule. The potential impact could be cut by ensuring that any increments to energy supply are from renewable-energy sources, and by preparing to switch as early as possible to low-impact sources, or types, of cement, concrete, steel, aggregate, and so on. To make sure that the transition is as effective as possible, it needs to be planned, and modelled to identify opportunities for synergy.

<script>