Part 7 (1/2)
CHAPTER 20.
The 'New Business-As-Usual'
There's a new colour in fas.h.i.+on: warm-climate green. Pastel in tone and hard to miss, you'll find it in newspapers, on television and, especially, in lifestyle magazines, from fas.h.i.+on and travel, to house and garden.
From corporate responsibility to bottled water, climate-friendly images and products rea.s.sure us that it is okay to consume as never before. They invite us to feel good at 'carbon neutral' entertainment spectaculars, and to love the celebrities who offset their private jet travel. They invite us to build, drive, buy, fly, shop, eat, drink, and wear sustainability. They a.s.sure us that we need new, climate-friendly green things to replace the not-so-green things we have already. But their message is a double-edged fraud: consume even more, and save the planet.
Some of the green-marketing claims are true, within narrow boundaries, but many are not, and only a few paint the big picture of a sustainable path to a climate-safe future. The message is that we can proceed without inconvenience; this is the lifestyle face of the 'new business-as-usual' - an attempt to deal with the immediate pressures of the sustainability crisis in a way that minimises the changes in business models and power relations, at the expense of really solving the problems.
There has been a host of products, services, and market mechanisms developed in response to global warming, but they are not all necessarily about helping create a safe climate. These include 'clean' coal, current-generation biofuels, voluntary carbon offsets, and two arrangements under the Kyoto Protocol: carbon trading, and the Clean Development Mechanism.
'Clean' coal.
Carbon capture and storage (CCS) is a technique used to remove carbon dioxide from industrial pollution - especially from power stations - and to compress, transport, and permanently store it in secure underground structures, such as expired gas and oil fields, and other geological formations. Spending government money on CCS development is the 'new business-as-usual' mainstay of coal miners, power generators, and the politicians who defend them. But CCS holds out a false promise. At the scale required, CCS is experimental, unproven technology. Further, if it did work, the majority of CCS deployment would not occur until the second half of this century, according to the 2005 IPCC Special Report on Carbon Dioxide Capture and Storage. The Australian Labor government's CCS initiative, announced on 25 February 2007, when it was in opposition, envisages the technology only 'entering the grid' by 2030, a timeline that takes it off the table as a near-term emissions-reduction option. It will simply be too late: urgent emission cuts are essential now. If nations in the AsiaPacific were to adopt a climate-change strategy based on CCS technology, by 2050 emissions would still rise by more than 70 per cent.
While an extensive 2007 study from the Ma.s.sachusetts Inst.i.tute of Technology expresses confidence that large-scale CCS projects can be operated safely, it worries that 'no carbon dioxide storage project that is currently operating has the necessary modeling, monitoring, and verification capability to resolve outstanding technical issues, at scale' - in other words, it is not possible to know at this stage if the whole technology-package works. Proposed new plants in Canada and the USA have been sc.r.a.pped before construction started, largely because they were not cost effective. As a new and complex technology, CCS, like nuclear energy before it, seems destined to be dogged by cost overruns, unforeseen problems, and delays. The biggest concern is that emissions stored underground could slowly leak over time, deferring today's problem to create a monster greenhouse headache in the future.
CCS is inconsistent with a zero-emissions goal because the technology is likely to capture only a portion of greenhouse pollutants, and is energy intensive. It would be possible to capture 8090 per cent of the carbon dioxide from a coal-fired power station, but only if newly constructed stations were to burn 1140 per cent more coal to produce the same output. The energy cost would be higher for retrofitted power stations, which have lower CCS efficiencies.
The IPCC finds that CCS would double the cost of electricity where storage sites are distant from power stations.
This would increase the cost of coal-fired power with CCS to more than that of many renewable-energy sources, especially as technology improvements and increasing economies of scale are predicted to halve the cost of renewable electricity generation over the next two decades. Capture expert Greg Duffy told a 2006 Australian parliamentary inquiry that CCS would double the cost of base-load electricity generation, and reduce the output from a power station by about 30 per cent. Lincoln Paterson of the CSIRO told the same inquiry that beyond 100 kilometres, the transport costs may become 'prohibitively expensive'.
A year earlier, a report from five CSIRO energy technology researchers predicted that in five to seven years the cost of electricity from concentrated solar-thermal plants would be compet.i.tive with coal-fired generation (without CCS). True to the 'new business as usual' approach, the report was suppressed by the federal government, while hundreds of millions of dollars were allocated for 'clean coal' research. As a result, solar-thermal expertise was driven overseas.
The term 'clean coal' - or, we should say, 'less dirty coal' - also refers to new coal-fired power stations that use Integrated Gasification Combined Cycle (IGCC) technology, a process that first produces a gas from the coal. These plants still emit large amounts of carbon dioxide that would need to be sequestered, their building costs are up to three times that of the most efficient gas-fired installations, and they are more expensive to run than conventional coal plants.
Current-generation biofuels.
Biofuels (ethanol, methanol, and biodiesel) are manufactured from bioma.s.s (plant or other biological material) such as crops, or crop and forestry waste, and are considered, by some, to be a sustainable fuel source, because their emissions are part of the carbon cycle. Plants and trees draw down atmospheric carbon through photosynthesis, and the bioma.s.s is converted to biofuels, which emit carbon into the air when they combust. This carbon is drawn down again in the next fuel-production cycle.
But current biofuels are manufactured largely from food crops, including maize and soy beans, and from palm oil plantations that are grown in place of rainforests, and this creates its own set of problems. Resolving a multi-faceted sustainability crisis requires an a.s.sessment of the life-cycle impact of each proposed solution. This is a test that current-generation biofuels fail.
When the biofuel is derived from broad-acre crops that require nitrogen-emitting fertilisers, such as maize and rapeseed oil, the total energy input can be greater than the output, and the carbon emissions are up to 70 per cent higher than if a car used petrol. In some cases, the biofuel is also not an equal replacement: ethanol burns less efficiently than petrol, for example. The end result is that switching from biofuels back to petrol would produce less global warming; nonetheless, petrol is heavily taxed, while biofuels in many countries are subsidised or taxed at lower rates.
Using crops for biofuels often means converting food sources into energy sources. This transition has seen world food prices double in the five years to 2007, so that under fixed-budget UN food relief programs only half as many people will be fed. World wheat prices, for example, doubled in 2007, and the UN's global food index jumped by more than 40 per cent in a year. US corn farmers, encouraged by government subsidies and rising prices, have turned their fields to ethanol production while, across the border, hunger drove people in Mexico City to riot. As much as 20 per cent of the US grain crop has been diverted to biofuel production, but the quant.i.ty of biofuel produced is a subst.i.tute for only 2 per cent of the USA's petrol demand.
What's more, if sufficient land were allocated to biofuels to replace current global petrol consumption, there would be no land left for food. If plans to turn more arable land to biofuels collide with a growing population and demand for food, the result will be starvation on a global scale. Swaziland was a case in point: in 2007, while 40 per cent of its people faced acute food shortages, the Swaziland government exported biofuels made from the staple crop ca.s.sava.
Using uncultivated land for biofuels also destroys habitats. John Beddington, Britain's chief scientific advisor, says cutting down rainforest to produce biofuel crops such as palm oil is 'profoundly stupid'. In Indonesia, more than a billion tonnes of carbon is pouring into the air each year as thick rainforest is cleared for cropping; still, the country plans to expand palm oil production to 260,000 square kilometres by 2025.
'The compet.i.tion for grain between the world's 800 million motorists, who want to maintain their mobility, and its two billion poorest people, who are simply trying to survive, is emerging as an epic issue,' says Lester Brown, of the Was.h.i.+ngton-based Worldwatch Inst.i.tute, who notes that, in seven of the past eight years, the world has grown less grain than it has used, so that the world's grain-stock reserve was down to 50 days by the end of 2007.
In 2007, the UN special rapporteur on the right to food, Jean Ziegler, denounced biofuels as 'a crime against humanity' and called for a five-year moratorium on their production. If that doesn't occur, says policy a.n.a.lyst George Monbiot, 'the superior purchasing power of drivers in the rich world means that they will s.n.a.t.c.h food from people's mouths. Run your car on virgin biofuel and other people will starve'.
The quant.i.ty of biofuel that can be produced in a sustainable manner is also likely to be very small compared to current demand for petrol, and its current production is a very narrow response to peak oil.
Can biofuel production ever be sustainable? It depends on the source of the bioma.s.s, and how and where it is produced. Second-generation biofuels made from wood, straw, or waste from agricultural cropping will become commercially available. They have the capacity to complement sustainable agriculture and forestry practices, and to be co-produced with agricultural charcoal to sequester carbon. To that extent, biofuels have a future; but not when rainforests are destroyed, biodiversity is decreased, food production is lost, and small landholders in the developing world are forcefully displaced.
Voluntary carbon offsets.
Carbon offsetting means that emissions from household utilities, transport, or commercial activity are balanced by buying a product that will reduce emissions elsewhere, or reduce greenhouse-gas levels. The carbon-offset product may be an investment in a program that will draw down carbon, such as tree planting, or a project that will reduce future carbon emissions, such as achieving energy efficiency or building renewable-energy capacity. But when all sectors of the economy require deep and urgent emission cuts, as our current climate emergency demands, we all have to play our part, rather than paying someone else to do it.
As a commercial product, carbon offsetting has a potentially dangerous effect on people. A good a.n.a.logy of this effect is the medieval Church practice of selling indulgences to sinners in order to lure them to buy absolution. As sinners bought absolution, so they were free to sin again - just as buying offsets a.s.suages people's guilt about producing carbon emissions. Too often, offsetting is an eco-fantasy that justifies a high-carbon personal or corporate lifestyle.
In the compet.i.tive commercial world, carbon offsetting also risks becoming just a cheap publicity stunt to push the appeal of a new alb.u.m or concert tour. In this form, carbon offsetting encourages complacency, displaces real actions, and fosters the illusion that we can keep on polluting forever.
A Financial Times investigation published in April 2007 found that companies and individuals rus.h.i.+ng to go green 'have been spending millions on carbon credit projects that yield few if any environmental benefits'. It uncovered widespread failure in the new carbon-offset markets, suggesting that some organisations are paying for emissions reductions that do not take place, while others are making big profits for very small expenditure and, in some cases, for clean-ups that they would have made anyway. It also found carbon-offset selling services of questionable or no value, and a shortage of verification.
Distorted economic relations across the world can also undermine the value of offsets; for example, offsets may be exported to developing countries, where costs are lower and the balance is pocketed by the carbon-offset entrepreneur. In other cases, offset schemes are just not viable: in one example, a British company bought treadle water-pumps to replace diesel pumps for Indian farmers, in order to reduce local emissions and thus 'offset' Westerners' air travel. The reality on the ground is that if a peasant farmer treads for two hours a day, it would take at least three years to offset the carbon dioxide from one return flight from London to India - luxury travel is 'offset' by Indian human energy.
The best offset schemes give a guaranteed result by investing in renewable energy to reduce emissions, and are effective in acting as a social-change agent by building infrastructure and by encouraging policies that will cut future emissions and are consistent with the need for a zero-emissions economy. These are not the cheapest schemes.
Other schemes may be genuine, but misguided. Trees take years to sequester carbon after they are planted, so reafforestation offsets are doing very little to reduce global warming now, when it really counts, and are difficult to verify. Trees don't offset anything if they die from changing rainfall patterns or neglect, and in many cases the effect of tree planting is only to pay back the carbon debt incurred when the land was first cleared.
And at the cheap end of the offset market are cowboy operators whose schemes lack transparency: trees may not be planted, or may be counted multiple times, or may be paid for by government grants and then resold as offsets. In an industry where there are no widely accepted standards or verification procedures, there is no accountability for this sort of activity.
Some travel-offset schemes promoted by airlines greatly underestimate the impact of the flight, because they fail to account for the fact that emissions at high alt.i.tude have almost three times the effect than they do at ground level.
On the other hand, some people who have made a real effort to reduce their emissions as far as practicable have found that there is still an emissions gap that they want to address, and they have found well-designed schemes that will structurally reduce emissions production.
In the end, for carbon offsetting to work, its market needs to be strongly regulated to ensure honesty, accountability, and verification, with appropriate technologies and schemes that encourage behaviour that is consistent with achieving a safe climate.
Clean Development Mechanism.
Currently, the biggest carbon-offset scheme is the Clean Development Mechanism (CDM), which was established by the Kyoto Protocol and has been in operation since 2001. Under the scheme, wealthy nations that are required to cut emissions under Kyoto can get credit by investing in large-scale projects in the developing world, where it is generally cheaper to achieve the same amount of emissions reduction. Organisations can buy Certified Emissions Reductions (carbon credits from these projects) to meet their national or regional offset carbon-reduction obligations. In theory, emissions-reducing projects in developing nations must be verified as being genuinely new activities that would not otherwise happen without the funding.
This scheme was exploited from the start. In March 2007, Newsweek reported: 'So far, the real winners in emissions trading have been polluting factory owners who can sell menial cuts for ma.s.sive profits and the brokers who pocket fees each time a company buys or sells the right to pollute.' An investigation by Nick Davies of the Guardian found that the CDM had been 'contaminated by gross incompetence, rule-breaking and possible fraud by companies in the developing world, according to UN paperwork, an unpublished expert report and alarming feedback from projects on the ground'. In one instance, carbon offsets for a US$5 million incinerator in China that was built to burn, rather than emit, hydrofluorocarbon gases were sold to European investors for $500 million.
Half of the offsets certified under the CDM in the initial period were for five similar large projects in India, China, and South Korea, where over-priced credits were sold for many times the cost of the action. In many cases, it was hard to demonstrate that emissions would be reduced, or to verify the amount. There was also evidence that as many as one-fifth of projects had been wrongly checked, and that many projects are blatantly 'non-additional'; that is, they would have gone ahead regardless of the CDM, and do not represent real additional emissions reductions.
Instead of stimulating new investment in the best green technologies, such as renewable energy, the CDM has mainly granted carbon credit to projects that would have been built anyway, such as large hydro and wind projects. A December 2007 study of the 654 hydro projects at various stages of the CDM approval process found blatant and widespread non-additionality. More than one-third of the large hydro-electric schemes that had been approved for credits were already completed before CDM approval; the majority of the projects (89 per cent) were expected to be completed within a year following approval; and almost all (96 per cent) were expected to be completed within two years. If you consider the long lead times for hydro construction, it becomes obvious that these projects were going to happen anyway, and that the many millions of credits that they generate will merely allow industrialised countries to meet their targets without reducing emissions. Further studies have confirmed that projects that use other technologies, such as wind, also suffer from widespread non-additionality.
Carbon trading.
CDM offsets are one element of the larger carbon market that has been set up by the Kyoto Protocol under the United Nations umbrella. Carbon trading is another, which is supposed to be an enforceable mechanism for reducing emissions. Under carbon trading, a total emissions target is set for an industry, or region, and is decreased over time. Quant.i.ty permits that are equal to the target are sold, and emitters must buy permits to match their level of pollution. In the name of efficiency, permits are traded. Over time, the number of permits is reduced, and their price increases due to increasing scarcity. As a result, the incentive to switch to low-pollution technology increases.
Can't go wrong? The carbon-trading market for Europe, known as the European Union Emissions Trading Scheme (EUETS), got off to a very bad start. The initial permit pool was too large, because of business lobbying, and permits were given away as rewards to the biggest polluters. These businesses then realised that they had more permits than they needed, so they sold them at huge profits. When everyone realised what had happened, the price of permits collapsed. As the price collapsed, so did the impetus for some viable CDM projects.
As a result of the scheme, some of the biggest polluters earned hundreds of millions - much coming from the budget of public inst.i.tutions, including universities and hospitals which had to purchase permits - and emission cuts were displaced onto the developing world.
Most current carbon-trading schemes have deep structural flaws: permits are given away to the biggest emitters, and pollution is transformed into a private property right; the need for deep emission reductions in the highest-polluting rich countries is s.h.i.+fted to developing nations; targets are inadequate, and verification and enforcement often poor; and money and effort is poured into trading carbon and finding loopholes, rather than into renewable energy.
Carbon trading also encourages the lowest-cost choice to the detriment of other factors: electricity generators may decide that switching from coal to gas fits the scheme's criterion, while the social imperative would be to invest in renewable-energy capacity to develop the technology, build productive capacity, and reduce the cost.