Part 15 (1/2)

Among the papers found after his death was the following memorandum, dated July the 3rd, 1841: ”Formed a design at the beginning of this week of investigating, as soon as possible after taking my degree, the irregularities in the motion of Ura.n.u.s, which are as yet unaccounted for, in order to find whether they may be attributed to the action of an undiscovered planet beyond it; and, if possible, thence to determine the elements of its...o...b..t approximately, which would lead probably to its discovery.”

After he had taken his degree, and had thus obtained a little relaxation from the lines within which his studies had previously been necessarily confined, Adams devoted himself to the study of the perturbations of Ura.n.u.s, in accordance with the resolve which we have just seen that he formed while he was still an undergraduate. As a first attempt he made the supposition that there might be a planet exterior to Ura.n.u.s, at a distance which was double that of Ura.n.u.s from the sun. Having completed his calculation as to the effect which such a hypothetical planet might exercise upon the movement of Ura.n.u.s, he came to the conclusion that it would be quite possible to account completely for the unexplained difficulties by the action of an exterior planet, if only that planet were of adequate size and had its...o...b..t properly placed. It was necessary, however, to follow up the problem more precisely, and accordingly an application was made through Professor Challis, the Director of the Cambridge Observatory, to the Astronomer Royal, with the object of obtaining from the observations made at Greenwich Observatory more accurate values for the disturbances suffered by Ura.n.u.s. Basing his work on the more precise materials thus available, Adams undertook his calculations anew, and at last, with his completed results, he called at Greenwich Observatory on October the 21st, 1845. He there left for the Astronomer Royal a paper which contained the results at which he had arrived for the ma.s.s and the mean distance of the hypothetical planet as well as the other elements necessary for calculating its exact position.

[PLATE: JOHN COUCH ADAMS.]

As we have seen in the preceding chapter, Le Verrier had been also investigating the same problem. The place which Le Verrier a.s.signed to the hypothetical disturbing planet for the beginning of the year 1847, was within a degree of that to which Adams's computations pointed, and which he had communicated to the Astronomer Royal seven months before Le Verrier's work appeared. On July the 29th, 1846, Professor Challis commenced to search for the unknown object with the Northumberland telescope belonging to the Cambridge Observatory. He confined his attention to a limited region in the heavens, extending around that point to which Mr. Adams' calculations pointed. The relative places of all the stars, or rather star-like objects within this area, were to be carefully measured. When the same observations were repeated a week or two later, then the distances of the several pairs of stars from each other would be found unaltered, but any planet which happened to lie among the objects measured would disclose its existence by the alterations in distance due to its motion in the interval. This method of search, though no doubt it must ultimately have proved successful, was necessarily a very tedious one, but to Professor Challis, unfortunately, no other method was available. Thus it happened that, though Challis commenced his search at Cambridge two months earlier than Galle at Berlin, yet, as we have already explained, the possession of accurate star-maps by Dr. Galle enabled him to discover the planet on the very first night that he looked for it.

The rival claims of Adams and Le Verrier to the discovery of Neptune, or rather, we should say, the claims put forward by their respective champions, for neither of the ill.u.s.trious investigators themselves condescended to enter into the personal aspect of the question, need not be further discussed here. The main points of the controversy have been long since settled, and we cannot do better than quote the words of Sir John Herschel when he addressed the Royal Astronomical Society in 1848:--

”As genius and destiny have joined the names of Le Verrier and Adams, I shall by no means put them asunder; nor will they ever be p.r.o.nounced apart so long as language shall celebrate the triumphs of science in her sublimest walks. On the great discovery of Neptune, which may be said to have surpa.s.sed, by intelligible and legitimate means, the wildest pretensions of clairvoyance, it Would now be quite superfluous for me to dilate. That glorious event and the steps which led to it, and the various lights in which it has been placed, are already familiar to every one having the least tincture of science. I will only add that as there is not, nor henceforth ever can be, the slightest rivalry on the subject between these two ill.u.s.trious men--as they have met as brothers, and as such will, I trust, ever regard each other--we have made, we could make, no distinction between then, on this occasion. May they both long adorn and augment our science, and add to their own fame already so high and pure, by fresh achievements.”

Adams was elected a Fellow of St. John's College, Cambridge, in 1843; but as he did not take holy orders, his Fellows.h.i.+p, in accordance with the rules then existing came to an end in 1852. In the following year he was, however, elected to a Fellows.h.i.+p at Pembroke College, which he retained until the end of his life. In 1858 he was appointed Professor of Mathematics in the University of St. Andrews, but his residence in the north was only a brief one, for in the same year he was recalled to Cambridge as Lowndean Professor of Astronomy and Geometry, in succession to Peac.o.c.k. In 1861 Challis retired from the Directors.h.i.+p of the Cambridge Observatory, and Adams was appointed to succeed him.

The discovery of Neptune was a brilliant inauguration of the astronomical career of Adams. He worked at, and wrote upon, the theory of the motions of Biela's comet; he made important corrections to the theory of Saturn; he investigated the ma.s.s of Ura.n.u.s, a subject in which he was naturally interested from its importance in the theory of Neptune; he also improved the methods of computing the orbits of double stars. But all these must be regarded as his minor labours, for next to the discovery of Neptune the fame of Adams mainly rests on his researches upon certain movements of the moon, and upon the November meteors.

The periodic time of the moon is the interval required for one circuit of its...o...b..t. This interval is known with accuracy at the present day, and by means of the ancient eclipses the period of the moon's revolution two thousand years ago can be also ascertained. It had been discovered by Halley that the period which the moon requires to accomplish each of its revolutions around the earth has been steadily, though no doubt slowly, diminis.h.i.+ng. The change thus produced is not appreciable when only small intervals of time are considered, but it becomes appreciable when we have to deal with intervals of thousands of years. The actual effect which is produced by the lunar acceleration, for so this phenomenon is called, may be thus estimated. If we suppose that the moon had, throughout the ages, revolved around the earth in precisely the same periodic time which it has at present, and if from this a.s.sumption we calculate back to find where the moon must have been about two thousand years ago, we obtain a position which the ancient eclipses show to be different from that in which the moon was actually situated. The interval between the position in which the moon would have been found two thousand years ago if there had been no acceleration, and the position in which the moon was actually placed, amounts to about a degree, that is to say, to an arc on the heavens which is twice the moon's apparent diameter.

If no other bodies save the earth and the moon were present in the universe, it seems certain that the motion of the moon would never have exhibited this acceleration. In such a simple case as that which I have supposed the orbit of the moon would have remained for ever absolutely unchanged. It is, however, well known that the presence of the sun exerts a disturbing influence upon the movements of the moon. In each revolution our satellite is continually drawn aside by the action of the sun from the place which it would otherwise have occupied. These irregularities are known as the perturbations of the lunar orbit, they have long been studied, and the majority of them have been satisfactorily accounted for. It seems, however, to those who first investigated the question that the phenomenon of the lunar acceleration could not be explained as a consequence of solar perturbation, and, as no other agent competent to produce such effects was recognised by astronomers, the lunar acceleration presented an unsolved enigma.

At the end of the last century the ill.u.s.trious French mathematician Laplace undertook a new investigation of the famous problem, and was rewarded with a success which for a long time appeared to be quite complete. Let us suppose that the moon lies directly between the earth and the sun, then both earth and moon are pulled towards the sun by the solar attraction; as, however, the moon is the nearer of the two bodies to the attracting centre it is pulled the more energetically, and consequently there is an increase in the distance between the earth and the moon. Similarly when the moon happens to lie on the other side of the earth, so that the earth is interposed directly between the moon and the sun, the solar attraction exerted upon the earth is more powerful than the same influence upon the moon. Consequently in this case, also, the distance of the moon from the earth is increased by the solar disturbance. These instances will ill.u.s.trate the general truth, that, as one of the consequences of the disturbing influence exerted by the sun upon the earth-moon system, there is an increase in the dimensions of the average orbit which the moon describes around the earth. As the time required by the moon to accomplish a journey round the earth depends upon its distance from the earth, it follows that among the influences of the sun upon the moon there must be an enlargement of the periodic time, from what it would have been had there been no solar disturbing action.

This was known long before the time of Laplace, but it did not directly convey any explanation of the lunar acceleration. It no doubt amounted to the a.s.sertion that the moon's periodic time was slightly augmented by the disturbance, but it did not give any grounds for suspecting that there was a continuous change in progress. It was, however, apparent that the periodic time was connected with the solar disturbance, so that, if there were any alteration in the amount of the sun's disturbing effect, there must be a corresponding alteration in the moon's periodic time. Laplace, therefore, perceived that, if he could discover any continuous change in the ability of the sun for disturbing the moon, he would then have accounted for a continuous change in the moon's periodic time, and that thus an explanation of the long-vexed question of the lunar acceleration might be forthcoming.

The capability of the sun for disturbing the earth-moon system is obviously connected with the distance of the earth from the sun. If the earth moved in an orbit which underwent no change whatever, then the efficiency of the sun as a disturbing agent would not undergo any change of the kind which was sought for. But if there were any alteration in the shape or size of the earth's...o...b..t, then that might involve such changes in the distance between the earth and the sun as would possibly afford the desired agent for producing the observed lunar effect. It is known that the earth revolves in an orbit which, though nearly circular, is strictly an ellipse. If the earth were the only planet revolving around the sun then that ellipse would remain unaltered from age to age. The earth is, however, only one of a large number of planets which circulate around the great luminary, and are guided and controlled by his supreme attracting power. These planets mutually attract each other, and in consequence of their mutual attractions the orbits of the planets are disturbed from the simple elliptic form which they would otherwise possess. The movement of the earth, for instance, is not, strictly speaking, performed in an elliptical orbit. We may, however, regard it as revolving in an ellipse provided we admit that the ellipse is itself in slow motion.

It is a remarkable characteristic of the disturbing effects of the planets that the ellipse in which the earth is at any moment moving always retains the same length; that is to say, its longest diameter is invariable. In all other respects the ellipse is continually changing. It alters its position, it changes its plane, and, most important of all, it changes its eccentricity. Thus, from age to age the shape of the track which the earth describes may at one time be growing more nearly a circle, or at another time may be departing more widely from a circle. These alterations are very small in amount, and they take place with extreme slowness, but they are in incessant progress, and their amount admits of being accurately calculated. At the present time, and for thousands of years past, as well as for thousands of years to come, the eccentricity of the earth's...o...b..t is diminis.h.i.+ng, and consequently the orbit described by the earth each year is becoming more nearly circular. We must, however, remember that under all circ.u.mstances the length of the longest axis of the ellipse is unaltered, and consequently the size of the track which the earth describes around the sun is gradually increasing. In other words, it may be said that during the present ages the average distance between the earth and the sun is waxing greater in consequence of the perturbations which the earth experiences from the attraction of the other planets. We have, however, already seen that the efficiency of the solar attraction for disturbing the moon's movement depends on the distance between the earth and the sun. As therefore the average distance between the earth and the sun is increasing, at all events during the thousands of years over which our observations extend, it follows that the ability of the sun for disturbing the moon must be gradually diminis.h.i.+ng.