Part 14 (1/2)

”I have called him one of my dearest friends, and most truly; for I know not how much longer than twenty-five years we have been in intimate correspondence, of most friendly agreement or disagreement, of most cordial interest in each other. And yet we did not know each other's faces. I met him about 1830 at Babbage's breakfast table, and there for the only time in our lives we conversed. I saw him, a long way off, at the dinner given to Herschel (about 1838) on his return from the Cape and there we were not near enough, nor on that crowded day could we get near enough, to exchange a word. And this is all I ever saw, and, so it has pleased G.o.d, all I shall see in this world of a man whose friendly communications were among my greatest social enjoyments, and greatest intellectual treats.”

There is a very interesting memoir of Hamilton written by De Morgan, in the ”Gentleman's Magazine” for 1866, in which he produces an excellent sketch of his friend, ill.u.s.trated by personal reminiscences and anecdotes. He alludes, among other things, to the picturesque confusion of the papers in his study. There was some sort of order in the ma.s.s, discernible however, by Hamilton alone, and any invasion of the domestics, with a view to tidying up, would throw the mathematician as we are informed, into ”a good honest thundering pa.s.sion.”

Hardly any two men, who were both powerful mathematicians, could have been more dissimilar in every other respect than were Hamilton and De Morgan. The highly poetical temperament of Hamilton was remarkably contrasted with the practical realism of De Morgan. Hamilton sends sonnets to his friend, who replies by giving the poet advice about making his will. The metaphysical subtleties, with which Hamilton often filled his sheets, did not seem to have the same attraction for De Morgan that he found in battles about the quantification of the Predicate. De Morgan was exquisitely witty, and though his jokes were always appreciated by his correspondent, yet Hamilton seldom ventured on anything of the same kind in reply; indeed his rare attempts at humour only produced results of the most ponderous description. But never were two scientific correspondents more perfectly in sympathy with each other. Hamilton's work on Quaternions, his labours in Dynamics, his literary tastes, his metaphysics, and his poetry, were all heartily welcomed by his friend, whose letters in reply invariably evince the kindliest interest in all Hamilton's concerns. In a similar way De Morgan's letters to Hamilton always met with a heartfelt response.

Alike for the memory of Hamilton, for the credit of his University, and for the benefit of science, let us hope that a collected edition of his works will ere long appear--a collection which shall show those early achievements in splendid optical theory, those achievements of his more mature powers which made him the Lagrange of his country, and finally those creations of the Quaternion Calculus by which new capabilities have been bestowed on the human intellect.

LE VERRIER.

The name of Le Verrier is one that goes down to fame on account of very different discoveries from those which have given renown to several of the other astronomers whom we have mentioned. We are sometimes apt to identify the idea of an astronomer with that of a man who looks through a telescope at the stars; but the word astronomer has really much wider significance. No man who ever lived has been more ent.i.tled to be designated an astronomer than Le Verrier, and yet it is certain that he never made a telescopic discovery of any kind. Indeed, so far as his scientific achievements have been concerned, he might never have looked through a telescope at all.

For the full interpretation of the movements of the heavenly bodies, mathematical knowledge of the most advanced character is demanded.

The mathematician at the outset calls upon the astronomer who uses the instruments in the observatory, to ascertain for him at various times the exact positions occupied by the sun, the moon, and the planets. These observations, obtained with the greatest care, and purified as far as possible from the errors by which they may be affected form, as it were, the raw material on which the mathematician exercises his skill. It is for him to elicit from the observed places the true laws which govern the movements of the heavenly bodies. Here is indeed a task in which the highest powers of the human intellect may be worthily employed.

Among those who have laboured with the greatest success in the interpretation of the observations made with instruments of precision, Le Verrier holds a highly honoured place. To him it has been given to provide a superb ill.u.s.tration of the success with which the mind of man can penetrate the deep things of Nature.

The ill.u.s.trious Frenchman, Urban Jean Joseph Le Verrier, was born on the 11th March, 1811, at St. Lo, in the department of Manche. He received his education in that famous school for education in the higher branches of science, the Ecole Polytechnique, and acquired there considerable fame as a mathematician. On leaving the school Le Verrier at first purposed to devote himself to the public service, in the department of civil engineering; and it is worthy of note that his earliest scientific work was not in those mathematical researches in which he was ultimately to become so famous. His duties in the engineering department involved practical chemical research in the laboratory. In this he seems to have become very expert, and probably fame as a chemist would have been thus attained, had not destiny led him into another direction. As it was, he did engage in some original chemical research. His first contributions to science were the fruits of his laboratory work; one of his papers was on the combination of phosphorus and hydrogen, and another on the combination of phosphorus and oxygen.

His mathematical labours at the Ecole Polytechnique had, however, revealed to Le Verrier that he was endowed with the powers requisite for dealing with the subtlest instruments of mathematical a.n.a.lysis.

When he was twenty-eight years old, his first great astronomical investigation was brought forth. It will be necessary to enter into some explanation as to the nature of this, inasmuch as it was the commencement of the life-work which he was to pursue.

If but a single planet revolved around the sun, then the orbit of that planet would be an ellipse, and the shape and size, as well as the position of the ellipse, would never alter. One revolution after another would be traced out, exactly in the same manner, in compliance with the force continuously exerted by the sun. Suppose, however, that a second planet be introduced into the system. The sun will exert its attraction on this second planet also, and it will likewise describe an orbit round the central globe. We can, however, no longer a.s.sert that the orbit in which either of the planets moves remains exactly an ellipse. We may, indeed, a.s.sume that the ma.s.s of the sun is enormously greater than that of either of the planets. In this case the attraction of the sun is a force of such preponderating magnitude, that the actual path of each planet remains nearly the same as if the other planet were absent. But it is impossible for the orbit of each planet not to be affected in some degree by the attraction of the other planet. The general law of nature a.s.serts that every body in s.p.a.ce attracts every other body. So long as there is only a single planet, it is the single attraction between the sun and that planet which is the sole controlling principle of the movement, and in consequence of it the ellipse is described. But when a second planet is introduced, each of the two bodies is not only subject to the attraction of the sun, but each one of the planets attracts the other. It is true that this mutual attraction is but small, but, nevertheless, it produces some effect. It ”disturbs,” as the astronomer says, the elliptic orbit which would otherwise have been pursued. Hence it follows that in the actual planetary system where there are several planets disturbing each other, it is not true to say that the orbits are absolutely elliptic.

At the same time in any single revolution a planet may for most practical purposes be said to be actually moving in an ellipse. As, however, time goes on, the ellipse gradually varies. It alters its shape, it alters its plane, and it alters its position in that plane. If, therefore, we want to study the movements of the planets, when great intervals of time are concerned, it is necessary to have the means of learning the nature of the movement of the orbit in consequence of the disturbances it has experienced.

We may ill.u.s.trate the matter by supposing the planet to be running like a railway engine on a track which has been laid in a long elliptic path. We may suppose that while the planet is coursing along, the shape of the track is gradually altering. But this alteration may be so slow, that it does not appreciably affect the movement of the engine in a single revolution. We can also suppose that the plane in which the rails have been laid has a slow oscillation in level, and that the whole orbit is with more or less uniformity moved slowly about in the plane.

In short periods of time the changes in the shapes and positions of the planetary orbits, in consequence of their mutual attractions, are of no great consequence. When, however, we bring thousands of years into consideration, then the displacements of the planetary orbits attain considerable dimensions, and have, in fact, produced a profound effect on the system.

It is of the utmost interest to investigate the extent to which one planet can affect another in virtue of their mutual attractions. Such investigations demand the exercise of the highest mathematical gifts. But not alone is intellectual ability necessary for success in such inquiries. It must be united with a patient capacity for calculations of an arduous type, protracted, as they frequently have to be, through many years of labour. Le Verrier soon found in these profound inquiries adequate scope for the exercise of his peculiar gifts. His first important astronomical publication contained an investigation of the changes which the orbits of several of the planets, including the earth, have undergone in times past, and which they will undergo in times to come.

As an ill.u.s.tration of these researches, we may take the case of the planet in which we are, of course, especially interested, namely, the earth, and we can investigate the changes which, in the lapse of time, the earth's...o...b..t has undergone, in consequence of the disturbance to which it has been subjected by the other planets. In a century, or even in a thousand years, there is but little recognisable difference in the shape of the track pursued by the earth. Vast periods of time are required for the development of the large consequences of planetary perturbation. Le Verrier has, however, given us the particulars of what the earth's journey through s.p.a.ce has been at intervals of 20,000 years back from the present date. His furthest calculation throws our glance back to the state of the earth's track 100,000 years ago, while, with a bound forward, he shows us what the earth's...o...b..t is to be in the future, at successive intervals of 20,000 years, till a date is reached which is 100,000 years in advance of A.D. 1800.

The talent which these researches displayed brought Le Verrier into notice. At that time the Paris Observatory was presided over by Arago, a SAVANT who occupies a distinguished position in French scientific annals. Arago at once perceived that Le Verrier was just the man who possessed the qualifications suitable for undertaking a problem of great importance and difficulty that had begun to force itself on the attention of astronomers. What this great problem was, and how astonis.h.i.+ng was the solution it received, must now be considered.

Ever since Herschel brought himself into fame by his superb discovery of the great planet Ura.n.u.s, the movements of this new addition to the solar system were scrutinized with care and attention. The position of Ura.n.u.s was thus accurately determined from time to time. At length, when sufficient observations of this remote planet had been brought together, the route which the newly-discovered body pursued through the heavens was ascertained by those calculations with which astronomers are familiar. It happens, however, that Ura.n.u.s possesses a superficial resemblance to a star. Indeed the resemblance is so often deceptive that long ere its detection as a planet by Herschel, it had been observed time after time by skilful astronomers, who little thought that the star-like point at which they looked was anything but a star. From these early observations it was possible to determine the track of Ura.n.u.s, and it was found that the great planet takes a period of no less than eighty-four years to accomplish a circuit. Calculations were made of the shape of the orbit in which it revolved before its discovery by Herschel, and these were compared with the orbit which observations showed the same body to pursue in those later years when its planetary character was known. It could not, of course, be expected that the orbit should remain unaltered; the fact that the great planets Jupiter and Saturn revolve in the vicinity of Ura.n.u.s must necessarily imply that the orbit of the latter undergoes considerable changes. When, however, due allowance has been made for whatever influence the attraction of Jupiter and Saturn, and we may add of the earth and all the other Planets, could possibly produce, the movements of Ura.n.u.s were still inexplicable. It was perfectly obvious that there must be some other influence at work besides that which could be attributed to the planets already known.

Astronomers could only recognise one solution of such a difficulty.

It was impossible to doubt that there must be some other planet in addition to the bodies at that time known, and that the perturbations of Ura.n.u.s. .h.i.therto unaccounted for, were due to the disturbances caused by the action of this unknown planet. Arago urged Le Verrier to undertake the great problem of searching for this body, whose theoretical existence seemed demonstrated. But the conditions of the search were such that it must needs be conducted on principles wholly different from any search which had ever before been undertaken for a celestial object. For this was not a case in which mere survey with a telescope might be expected to lead to the discovery.

Certain facts might be immediately presumed with reference to the unknown object. There could be no doubt that the unknown disturber of Ura.n.u.s must be a large body with a ma.s.s far exceeding that of the earth. It was certain, however, that it must be so distant that it could only appear from our point of view as a very small object.

Ura.n.u.s itself lay beyond the range, or almost beyond the range, of una.s.sisted vision. It could be shown that the planet by which the disturbance was produced revolved in an orbit which must lie outside that of Ura.n.u.s. It seemed thus certain that the planet could not be a body visible to the unaided eye. Indeed, had it been at all conspicuous its planetary character would doubtless have been detected ages ago. The unknown body must therefore be a planet which would have to be sought for by telescopic aid.

There is, of course, a profound physical difference between a planet and a star, for the star is a luminous sun, and the planet is merely a dark body, rendered visible by the sunlight which falls upon it.

Notwithstanding that a star is a sun thousands of times larger than the planet and millions of times more remote, yet it is a singular fact that telescopic planets possess an illusory resemblance to the stars among which their course happens to lie. So far as actual appearance goes, there is indeed only one criterion by which a planet of this kind can be discriminated from a star. If the planet be large enough the telescope will show that it possesses a disc, and has a visible and measurable circular outline. This feature a star does not exhibit. The stars are indeed so remote that no matter how large they may be intrinsically, they only exhibit radiant points of light, which the utmost powers of the telescope fail to magnify into objects with an appreciable diameter. The older and well-known planets, such as Jupiter and Mars, possess discs, which, though not visible to the unaided eye, were clearly enough discernible with the slightest telescopic power. But a very remote planet like Ura.n.u.s, though it possessed a disc large enough to be quickly appreciated by the consummate observing skill of Herschel, was nevertheless so stellar in its appearance, that it had been observed no fewer than seventeen times by experienced astronomers prior to Herschel. In each case the planetary nature of the object had been overlooked, and it had been taken for granted that it was a star. It presented no difference which was sufficient to arrest attention.