Part 6 (1/2)
The disease is caused by a small bacillus discovered in 1894 which forms no spores and is easily destroyed by sunlight, but in the dark is capable of living with undiminished virulence for an indefinite time. The disease in man appears in two forms, the most common known as bubonic plague, from the great enlargement of the lymph nodes, those of the groin being most frequently affected. The more fatal form is known as pneumonic plague, and in this the lungs are the seat of the disease.
In the old descriptions of the disease it was frequently mentioned that large numbers of dead rats were found when it was prevalent, and the most striking fact of the recent investigations is the demonstration that the infection in man is due to transference of the bacillus from infected rats. There are endemic foci of the disease where it exists in animals, the present epidemic having started from such a focus in Northern China, in which region the _Tarabagan_, a small fur-bearing animal of the squirrel species, was infected. Rats are easily infected, the close social habits of the animal, the vermin which they harbor, and the habits of devouring their dead fellows favor the extension of infection. The disease extends from the rat to man chiefly by means of the fleas which contain the bacilli, and in cases of pneumonic plague from man to man by means of sputum infection. The disease once established in animals tends to remain, the virus being kept alive by transmission from animal to animal, and the persistence of the infection is favored by mild and chronic cases.
CHAPTER IX
DISEASE CARRIERS.--THE RELATION BETWEEN SPORADIC CASES OF INFECTIOUS DISEASE AND EPIDEMICS.--SMALLPOX.--CEREBRO-SPINAL MENINGITIS.--POLIOMYELITIS.--VARIATION IN THE SUSCEPTIBILITY OF INDIVIDUALS.--CONDITIONS WHICH MAY INFLUENCE SUSCEPTIBILITY.--RACIAL SUSCEPTIBILITY.--INFLUENCE OF AGE AND s.e.x.--OCCUPATION AND ENVIRONMENT.--THE AGE PERIOD OF INFECTIOUS DISEASES.
We have seen that insects serve as carriers of disease in two ways: in one, by becoming contaminated with organisms they serve as pa.s.sive carriers, and in the other they undergo infection and form a link in the disease. The more recent investigations of modes of transmission of infectious diseases have shown that man, in addition to serving while sick as a source of infection, may serve as a pa.s.sive carrier in two ways. For infection to take place not only must the pathogenic organism be present, but it must be able to overcome the pa.s.sive and active defences of the body and produce injury. Pathogenic organisms may find conditions favorable for growth on the surfaces of the body, and may live there, but be unable to produce infection, and the individual who simply harbors the organisms can transmit them to others. Such an individual may be a greater source of infection than one with the disease, because there is no suspicion of danger. The organisms which thus grow on the surfaces have in some cases been shown to be of diminished virulence, but in others have full pathogenic power. Such pa.s.sive carriers of infection have been found for a number of diseases, as cerebro-spinal meningitis, diphtheria, poliomyelitis and cholera. In all these cases the organisms are most frequently found in those individuals who have been exposed to infection as members of a family in which there have been cases of disease. The other sort of carrier has had and overcome the disease, but mutual relations have been established with the organism which continues to live in the body cavity. Diphtheria bacilli usually linger in the throat after convalescence is established, and until they have disappeared the individual is more dangerous than one actually sick with the disease. Health officers have recognized this in continuing the quarantine against the disease until the organism disappears. In typhoid fever bacilli may remain in the body for a long time and be continually discharged, as in the well-known case of ”typhoid Mary.”[1]
Single cases of certain infectious diseases may appear in a community year after year, and at intervals the cases become so numerous that the disease is said to be epidemic. Such a disease is smallpox. This is a highly infectious disease, towards which all mankind is susceptible. Complete protection against the disease can be conferred by Jenner's discovery of vaccination. The disease becomes modified when transferred to cattle, producing what is known as cowpox, in which vesicles similar to those of smallpox appear on the skin. The inoculation of man with the contents of such a vesicle produces a mild form of disease known as vaccinia, which protects the individual from smallpox. This protection is fully as adequate as that produced by an attack of smallpox, and we are warranted in saying that if thorough vaccination, or the inoculation with vaccinia, were carried out smallpox would disappear. There are great difficulties in the way of carrying out effective vaccination of the whole population, which are accentuated by the active opposition of people who are ignorant and wilfully remain so. There exists in every state a number of people unprotected by vaccination, and among these single cases of smallpox appear. The unprotected individuals gradually increase in number, forming an inflammable material awaiting the spark or infection which produces a conflagration in the one case and an epidemic in the other.
Cerebro-spinal meningitis is another example of a disease which exists in sporadic and epidemic form. This disease is caused by a small micrococcus, the organisms joined in pairs. The seat of the disease is in the meninges or membranes around the brain and spinal cord. The micrococci enter the body from the throat and nose, and either pa.s.s directly from here into the meninges, or they enter into the blood and are carried by this into the meninges. The organisms are easily destroyed and cannot long survive the conditions outside the body, so that for infection to take place the transmission must be very direct.
Carriers who have the organisms in the throat, but who do not have the disease, are the princ.i.p.al agents in dissemination. The mortality is high, and even in recovery permanent damage is often done to the brain or to the organs of special sense. Sporadic cases constantly occur in small numbers, and it is difficult or impossible to trace any connection between these cases. At varying intervals, often twenty years intervening, an epidemic appears which sometimes remains local in a city or state, sometimes extends to adjoining cities or states, and may even extend over a very large area. In the epidemics the mortality is much higher than in the sporadic cases. The same explanation given for smallpox cannot apply here, for there is not a similar acc.u.mulation of susceptible material. We know there is a great deal of variation in the virulence of the different pathogenic organisms, and the virulence can be artificially increased and diminished. In epidemics of meningitis the virulence of the organisms is increased, as is shown by the greater mortality. It is highly probable that such epidemics are due to changes which arise in the organisms from causes we do not know and which increase their capacity for harm. It is possible that such a change would convert a carrier into a case of disease, the organism acquiring greater powers of invasion. Such a strain of organisms arising in one place and producing an epidemic could be transported to another locality and exert the same action, or similar changes in the organisms could arise simultaneously in a number of places. a.n.a.logies to such conditions are given in plants. In certain plants it has been shown that from unknown causes there appears a tendency to the production of variations. A very beautiful herbaceous peony known as ”Bridesmaid” after having grown for a number of years in single form, in one year wherever grown suddenly became double. The peculiar thing with the lower unicellular organisms is that the changes which so arise do not tend to become permanent, the organism reverts to its usual character, the disease to its sporadic type.
A very fatal form of poliomyelitis has for a number of years prevailed in Sweden. In the United States there have been continually a number of single cases of the disease, and it is not impossible that a more pathogenic strain of the organism has developed in Sweden and has been imported into this country, giving rise to the much greater extension of the disease in a number of places.
The most cursory study of the infectious diseases shows that there is great variation in the susceptibility of individuals. Even in the most severe epidemics all are not equally affected, some escape the infection, others have the disease lightly, others severely, some die.
Chance enters into this, but plays a small part, for the same varying individual susceptibility is shown experimentally. If a given number of animals of the same species, age and weight, even those from the same litter, be inoculated with a given number of bacteria shown to be pathogenic for that species, the results differ. If the dose be necessarily fatal, death will take place at intervals; if a dose smaller than the fatal be used, some animals will die, others will recover. The defences of the organism being centred in the activity of the living tissue, any condition which depresses cell activity may have an effect in increasing susceptibility to infection. Animals which ordinarily are not susceptible to infection with a certain organism may be made so by prolonged hunger, or fatigue, by the influence of narcotics, by reduction of the body temperature, by loss of blood. In man prolonged fatigue, cold, the use of alcohol to excess and even psychic depression increases susceptibility. It has been shown that such conditions are accompanied by a diminution in the power of the blood to destroy bacteria.
There is variation in the susceptibility to infection in the different races of man. If a race be confined to one habitat with close intercourse between the people, such a race may acquire a high degree of immunity to local diseases by a gradual weeding out of the individuals who are most susceptible. A degree of comparative harmony may be gradually established between host and parasite, as is the case in wild animals. These have few diseases, the weak die, the resistant breed; they harbor, it is true, large numbers of parasites, but there is mutual adjustment between parasite and host. Diseases in animals greatly increase under the artificial conditions of domestication.
Certain highly specialized breeds of cattle, as the Alderneys, are much more susceptible to tuberculosis than the less specialized. The high development of the variation which consists in a marked ability to produce milk fat is probably combined with other qualities, shown in diminished resistance to disease, and under natural conditions the variation would not have persisted. The introduction of a new disease into an isolated people has often been attended with dire consequences. It is much the same thing with the introduction of disease of plants. In Europe the brown-tail moth and the gypsy moth produce continuously a certain amount of damage to the trees, but their parasitic enemies have developed with them and check their increase. These pests were brought to this country in which there were no conditions r.e.t.a.r.ding their increase and have produced great damage.
It is very difficult to estimate the degree of racial susceptibility.
The negro race seems to be more susceptible to certain diseases, such as tuberculosis and smallpox, less so to others, as yellow fever, malaria and uncinariasis. What are apparently differences in susceptibility may be explained by racial customs. A statistical inquiry into death in India from poisonous snakes might be interpreted as showing a marked resistance on the part of the white to the action of the venom, but it is merely a question of the boots of the whites and the naked feet and legs of the natives. The relatively greater frequency of smallpox in the blacks is due to the greater difficulties in carrying out vaccination measures among them and the greater opportunity for infection which results from their less hygienic life.
It has always been noted that when plague prevails in Oriental cities, the natives are more frequently attacked than are Europeans. This does not depend upon differences in susceptibility, but on the better hygienic conditions of the whites which prevent the close relation to rats and vermin by which infection is extended. There would be but little extension of the hookworm disease in a community where shoes were worn and the habits were cleanly.
It is by no means improbable that the formation of the habits of civilization was influenced by infection. Most of these habits, such as personal cleanliness, the avoidance of close contact, the demand for individual utensils for eating and drinking, are all of distinct advantage in opposing infection. Certain habits, on the other hand, such as kissing, which probably represents the extension of a habit of s.e.xual origin, are disadvantageous and infection is often transmitted in this way. In syphilitic infection the mouth forms one of the most common localizations of the disease and may contain the causal organisms in great numbers. This, the _spirochaeta pallida_, is an organism of great virulence, and man is the most susceptible animal.
The disease, like gonorrhoea, is essentially a s.e.xual disease, the primary location is in the s.e.xual organs, and it is transmitted chiefly by s.e.xual contact. Of all the infectious diseases, it is the one most frequently transmitted to the unborn child; in certain cases the disease is transmitted, in others the developing foetus may be so injured by the toxic products of the disease that various imperfections of development result, as is shown in deformities, or in conditions which render the entire organism or individual organs, particularly the nervous system, more susceptible to injury. Following the primary localization of the acquired form of the disease, there is usually secondary localization in the mucous membrane of the mouth, and the disease may be transmitted by kissing or by the use of contaminated utensils. The habit of indiscriminate kissing is one which might with great benefit be given up.
There is definite relation between age and the infectious diseases. In general, susceptibility is increased in the young; young animals can be successfully inoculated with diseases to which the adults of the species are immune, and certain human diseases, such as scarlet fever, measles and whooping cough, seem to be the prerogatives of the child.
It must be remembered, however, that one attack of these diseases confers a strong and lasting immunity and children represent a raw material unprotected by previous disease. Where measles has been introduced into an island population for the first time, all ages seem equally susceptible. All ages are equally susceptible to smallpox, and yet in the general prevalence of the disease in the prevaccination period it was almost confined to children, the adults being protected by a previous attack. The habits and environment at different ages have an influence on the opportunities for infection. There is comparatively little opportunity for infection during the first year, in which period the infant is nursed and has a narrow environment within which infection is easily controlled. With increasing years the opportunities for infection increase. When the child begins to move and crawl on hands and knees the hands become contaminated, and the habit of putting objects handled into the mouth makes infection by this route possible. Food also becomes more varied, milk forms an important part of the diet, and we are now appreciating the possibilities of raw milk in conveying infection. With the enlarging environment, with the school age bringing greater contact of the child with others, there come greater opportunities for infection which are partly offset by the increase in cleanliness. The dangers of infection in the school period are now greatly lessened by medical inspection and care of the school children. In the small epidemic of smallpox which prevailed in Boston from 1881 to 1883, there was a sharp decline in the incidence of the disease in children as soon as the school age was reached, this being due to the demand of vaccination as a condition for entrance into the schools. Many of the infectious diseases are much milder in children than in adults. This is the case in typhoid fever, malaria and yellow fever. The comparative immunity of the natives to yellow fever in regions where this prevails seems to be due to their having acquired the disease in infancy in so mild a form that it was not recognized as such.
The infectious diseases are preeminently the diseases of the first third of life. After the age of forty man represents a select material. He has acquired immunity to many infections by having experienced them. Habits of life have become fixed and there is a general adjustment to environment. The only infectious disease which shows no abatement in its incidence is pneumonia, and the mortality in this increases with age. Between thirty-five and fifty-five man stands on a tolerably firm foundation regarding health; after this the age atrophies begin, the effects of previous damage begin to be apparent, and the tumor incidence increases.
FOOTNOTE: [1] This was the case of a woman, by occupation a cook, whose numerous exchanges of service were accompanied by the appearance of cases of typhoid fever in the families. This became so marked that an examination was made and she was found to be a typhoid carrier and as such constantly discharging typhoid bacilli. She is now isolated.
CHAPTER X
INHERITANCE AS A FACTOR IN DISEASE.--THE PROCESS OF CELL MULTIPLICATION.--THE s.e.xUAL CELLS DIFFER FROM THE OTHER CELLS OF THE BODY.--INFECTION OF THE OVUM.--INTRA-UTERINE INFECTION.--THE PLACENTA AS A BARRIER TO INFECTION.--VARIATIONS AND MUTATIONS.--THE INHERITANCE OF SUSCEPTIBILITY TO DISEASE.--THE INFLUENCE OF ALCOHOLISM IN THE PARENTS ON THE DESCENDANTS.--THE HEREDITY OF NERVOUS DISEASES.--TRANSMISSION OF DISEASE BY THE FEMALE ONLY.--HEMOPHILIA.-- THE INHERITANCE OF MALFORMATIONS.--THE CAUSES OF MALFORMATIONS.--MATERNAL IMPRESSIONS HAVE NO INFLUENCE.--EUGENICS.
The question of inheritance of disease is closely a.s.sociated with the study of infection, and the general subject of heredity in its bearing on disease can be considered here. By heredity is understood the transference of similar characteristics from one generation of organisms to another. The formation of the s.e.xual cells is a much more complex process than that of the formation of single differentiated cells, for the properties of all the cells of the body are represented in the s.e.xual cells, to the union of which the heredity transmission of the qualities of the parents is due. In the nucleus of all the cells in the body there is a material called _chromatin_, which in the process of cell division forms a convoluted thread; this afterwards divides into a number of loops called _chromosomes_, the number of which are constant for each animal species. In cell division these loops divide longitudinally, one-half of each going to the two new cells which result from the division; each new cell has one-half of all the chromatin contained in the old and also one-half of the cytoplasm or the cell material outside of the nucleus. The process of s.e.xual fertilization consists in the union of the male and female s.e.x cells and an equal blending of the chromatin contained in each (Fig. 22). In the process of formation of the s.e.xual cells a diminution of the number of chromosomes contained in them takes place, but this is preceded by such an intimate intermingling of the chromatin that the s.e.xual cells contain part of all the chromosomes of the undifferentiated cells from which they were formed. The new cell which is formed by the union of the male and female s.e.xual cells and which const.i.tutes a new organism, contains the number of chromosomes characteristic of the species and parts of all the chromatin of the undifferentiated cells of male and female ancestors. As a result of this the most complicated mechanism in nature, it is evident that in a strict sense there can be no heredity of a disease because heredity in the mammal is solely a matter of the chromosomes and these could not convey a parasite. The new organism can, however, quickly become diseased and, by the transference of disease to it and by either parent, there is the appearance of hereditary transmission of disease, though in reality it is not such. The ovum itself can become the site of infection; this, which was first discovered by Pasteur in the eggs of silkworms, takes place not infrequently in the infection of insects with protozoa. In Texas fever the ticks which transmit the disease, after filling with the infected blood, drop off and lay eggs which contain the parasites, and the disease is propagated by the young ticks in whom the parasites have multiplied. The same thing is true in regard to the African relapsing or tick fever, which is also transferred by a tick. In the white diarrhoea of chickens the eggs become infected before they are laid and the young chick is infected before it emerges from the sh.e.l.l. It is highly improbable, and there is no certain evidence for it, that the extremely small amount of material contributed by the male can become infected and bring infection to the new organism. In the cases in which disease of the male parent is transferred to the offspring, it is either by an infection of the female by the male, with transference of the infection from her to the developing organism, or with the male s.e.xual cells there may be a transference to the female of the infectious material and the new organism may be directly infected. No other disease in man is so easily and directly transferred from either parent to offspring as is syphilis, and the disease is extremely malignant for the foetus, usually causing death before the normal period of intra-uterine development is reached.
[Ill.u.s.tration: FIG. 21.--DIAGRAM SHOWING THE RELATION OF THE s.e.xUAL CELLS TO THE SOMATIC CELLS OR THOSE OF THE GENERAL BODY. The s.e.xual cells are represented to the left of the line at the bottom of diagram and are black. From the fertilized ovum at the top there is a continuous cell development, with differentiation represented in the cell groups of the bottom row. It is seen that the s.e.xual cells are formed directly from the germ cell and contain no admixture from the cells of the body.]