Part 5 (1/2)

It is evident that just as the parasite has his weapons of offence and defence so has the host, otherwise there would be no recovery from infectious diseases. Although many of the infectious diseases have a high mortality, which in rare instances reaches one hundred per cent, the majority do recover. In certain cases the recovery is attended by immunity, the individual being protected to a greater or less degree from a recurrence of the same disease. The immunity is never absolute; it may last for a number of years only, and usually, if the disease be again acquired, the second attack is milder than the primary. Probably the most enduring immunity is in smallpox, although cases are known of two and even three attacks; the immunity is high in scarlet fever, measles, mumps and typhoid fever. The immunity from diphtheria is short, and in pneumonia, although there must be a temporary immunity, future susceptibility to the disease is probably increased. In certain cases the immunity is only local; the focus of disease heals because the tissue there has evolved means of protection from the parasite, but if any other part of the body be infected, the disease pursues the usual course. A boil, for example, is frequently followed by the appearance of similar boils in the vicinity due to the infection of the skin by the micrococci from the first boil, which by dressings, etc., have become spread over the surface.

The natural methods of defence of the host against the parasites have formed the main subject in the study of the infectious diseases for the last twenty years. Speculation in this territory has been rife and most of it fruitless, but by patient study of disease in man and by animal experimentation there has been gradually evolved a sum of knowledge which has been applied in many cases to the treatment of infectious diseases with immense benefit. Research was naturally turned to this subject, for it was evident that the processes by which the protection of the body was brought about must be known before there could be a really rational method of treatment directed towards the artificial induction of such processes, or hastening and strengthening those which were taking place. Previous to knowledge of the bacteria, their mode of life, their methods of infection and knowledge of the defences of the body, most of the methods of prevention and treatment of the infectious diseases was based largely on conjecture, the one brilliant exception being the discovery of vaccination by Jenner in 1798.

The host possesses the pa.s.sive defences of the surfaces which have already been considered. The first theories advanced in explanation of immunity were influenced by what was known of fermentation. One, the exhaustion theory, a.s.sumed that in the course of disease substances contained in the body and necessary for the growth of the bacteria became exhausted and the bacteria died in consequence. Another, the theory of addition, a.s.sumed that in the course of the disease substances inimical to the bacteria were formed. Both these theories were inadequate and not in accord with what was known of the physiology of the body. The most general mode of defence is by phagocytosis, the property which many cells have of devouring and digesting solid substances (Fig. 16-p). Although this had been known to take place in the amoebae and other unicellular organisms, the wide extent of the process and its importance in immunity was first recognized by Metschnikoff in 1884 and the phagocytic theory of immunity advanced and defended by a brilliant series of experiments by Metschnikoff and his pupils conducted in the Pasteur Inst.i.tute.

Metschnikoff's first observations were made on the daphnea, a small animalcule just visible to the naked eye which lives in fresh water.

The structure of the organism is simple, consisting of an external and internal surface between which there is a s.p.a.ce, the body cavity; daphneae are transparent and can be studied under the microscope while living. Metschnikoff observed that certain of them in the aquarium gradually lost their transparency and died, and examining these he found they were attacked by a species of fungus having long, thin spores. These spores were taken into the intestine with other food; they penetrated the thin wall of the intestine, pa.s.sed into the body cavity, multiplied there, and in consequence the animal died. In many cases, however, those penetrating became enclosed in cells which the body cavity contains and which correspond with the leucocytes of the blood; in these the spores were digested and destroyed. The daphneae in which this took place recovered from the infection. Here was a case in which all the stages of an infectious disease could be directly followed under the microscope, and the whole process was simple in comparison with infections in the higher animals. The pathogenic organism was known, the manner and site of invasion was clear, it was also evident that if the multiplication of the parasite was unchecked the animal died, but if the parasite was opposed by the body cells and destroyed the animal recovered. The studies were carried further into the diseases of the higher animals, and it was found the leucocytes in these played the same part as did the cells in the body cavity of the daphnea. The introduction of bacteria into certain animals was followed by their destruction within cells and no disease resulted; if this did not take place, the bacteria multiplied and produced disease.

Support also was given the theory by the demonstration at about the same time that in most of the infectious diseases the leucocytes of the blood became increased in number,--that in pneumonia, for instance, instead of the usual number of eight thousand in a cubic millimeter of blood, there were often thirty thousand or even fifty thousand. At about the same time also chemotaxis, or the action of chemical substances in attracting or repelling organisms, excited attention, and all these facts together became woven into the theory.

It was soon seen, however, that this theory, based as it was on observation and supported by the facts observed, was not, at least in its first crude form, capable of general application. Many animals have natural immunity to certain diseases; they do not have the disease under natural conditions, nor do they acquire the disease when the organisms causing it are artificially introduced into their tissues by inoculation. Such natural immunity seemed to be unconnected with defence by phagocytosis, for the leucocytes of the animal might or might not have phagocytic reaction to the particular organisms to which the animal was immune. It was also seen that recovery from infection in certain diseases was unconnected with phagocytosis. It had also been demonstrated, by German observers chiefly, that the serum of the blood, the colorless fluid in which the corpuscles float, was itself destructive, and that in an animal rendered immune to a special bacterium the destructive action of the serum on that organism was greatly increased. In this hostile serum the bacteria often became clumped together in ma.s.ses, the bodies became swollen, broken up, and finally disintegrated. This property of the serum was described as due to a substance in the serum called _alexine_, which in the immune animal became greatly increased in amount. It was even denied by some that phagocytosis of living bacteria took place, and that all those included in the cells were dead, having been destroyed in the first instance by the serum. The strife became a national one between the French and Germans,--on the one side in France the phagocytic theory was defended, and in Germany, on the other, the theory of serum immunity. The ma.s.s of experimental work which poured from the laboratories of the two countries in attack and defence became so great that it could not easily be followed. It had a good influence because, without the stimulation of this national rivalry, the knowledge which gradually arose from this work would not have been so quickly acquired. It is interesting that the mode of action of the serum in destroying bacteria was demonstrated not by a German but by Bordet, a French observer and a pupil of Metschnikoff. He showed that the serum contained two distinct substances, each necessary for the destructive action. The separate action of these substances can be studied since one is _thermolabile_, or destroyed by heating the serum to one hundred and thirty-three degrees; the other _thermostabile_, or capable of withstanding a greater degree of heat. These substances are known only by their effect, they have never been separated from the serum. The thermostabile substance, or _amboceptor_, as it is generally called, has in itself no destructive action on the bacteria; but in some way so alters them that they can be acted on by the thermolabile substance called _complement_ whose action is destructive. The amount of amboceptor may increase in the course of infection and its formation stimulated, the amount of complement remains unchanged. The action of the amboceptor is specific, that is, directed against a single species of bacterium only; the destructive power of the blood may be very great against a single bacterium species and have no effect on others.

There seem naturally to be many different amboceptors in the blood, and the number may be very greatly increased. It has been shown as a result of the work of many investigators that the s.h.i.+eld has two faces,--there is destruction both by cells and fluids and there is interaction by both. The amboceptors so necessary for the destructive action of the serum are produced by the body cells, particularly the leucocytes. The serum a.s.sists in pagocytosis by the action on bacteria of substances called _opsonins_ which are contained in it, and the formation of which can be very greatly stimulated. Again, not all inclusion of bacteria within leucocytes is indicative of phagocytosis; in many cases the bacteria seem to find the best conditions for existence within the leucocytes, and these and not the bacteria are destroyed.

So far it has been shown that the best defence of the body is, as is the best defence in war, by offensive measures, as ill.u.s.trated by phagocytosis and destruction by the serum. Both of these actions can be increased by their exercise just as the strength of muscular contraction can be increased by exercise, and the facility for doing everything increased by habit. Certain of the infectious diseases are, as has been said, essentially toxic in their nature, and in cultures the organisms produce poisonous substances. By the injection into the tissues of such substances the same disturbances are produced as when the bacteria are injected. Such a disease is diphtheria. In this there is only a superficial invasion of the tissues. The diphtheria bacilli are located on the surface of the tonsils or pharynx or windpipe, where, as a result of their action, the membrane so characteristic of the disease is produced. The membrane may be the cause of death when it is so extensively formed as to occlude the air pa.s.sages, but the prominent symptoms of the disease, the fever, the weakness of the heart and the great prostration are due not to the presence of the membrane, but to the action of toxic substances which are formed by the bacteria growing in the superficial lesions and absorbed. Teta.n.u.s, or lockjaw, is another example of these essentially toxic diseases.

The body must find some means of counteracting or destroying these injurious toxic substances. It does this by forming antagonistic substances called ant.i.toxines, which act not by destroying the toxines, but by uniting with them, the compound substance being harmless. It has been found that the production of ant.i.toxine can be so stimulated by the injection of toxine that the blood of the animal used for the purpose contains large amounts of ant.i.toxine. The horse is used in this way to manufacture ant.i.toxine, and the serum injected into a patient with diphtheria has a curative action, a greater amount being thus introduced than the patient can manufacture.

[Ill.u.s.tration: FIG. 18.--DIAGRAM TO ILl.u.s.tRATE EHRLICH'S THEORY OF ANt.i.tOXINE FORMATION. The surface of the cell (_n_) is covered with receptors some of which (_b_) fit the toxine molecule, (_a_) allowing the toxine to act upon the cell. Under the stimulus of this the cell produces these receptors in excess which enter into the blood and there combine with the toxine as in _a^1 b^1_, thus anchoring it and preventing it from acting upon the cells. The receptors _c_ and _d_ do not fit the toxine molecule.]

A very ingenious theory which well accords with the facts has been given by Ehrlich in explanation of the production of ant.i.toxine and of the reaction between toxine and ant.i.toxine (Fig. 18). This is based on the hypothesis, which is in accord with all facts and generally accepted, that the molecules which enter into the structure of any chemical substance have in each particular substance a definite arrangement, and that in a compound substance each elementary substance entering into the compound molecule has chemical affinities, most of which may be satisfied by finding a suitable mate. Ehrlich a.s.sumes that the very complex chemical substances which form the living cells have many unsatisfied chemical affinities, and that it is due to this that molecules of substances adapted for food can enter the cells and unite with them; but there must be some coincidence of molecular structure to enable the union to take place, the comparison being made of the fitting of a key into a lock. The toxines--that produced by the diphtheria bacillus being the best example--are substances whose molecular structure enables them to combine with the cells of the body, the combination being effected through certain chemical affinities belonging to the cells termed _receptors_.

Unless the living cells have receptors which will enable the combination with the toxine to take place, no effect can be produced by the toxine and the cells are not injured. This is the case in an animal naturally immune to the action of the diphtheria bacillus or its toxines. In the case of the susceptible animal the receptors of the cells of the different organs combine with the toxine to a greater or less extent, which explains the fact that different degrees of injury are produced in the different tissues; the toxine of teta.n.u.s, or lockjaw, for example, combines by preference with the nervous tissue, that of diphtheria with the lymphatic tissue. It is known that in accordance with the general law of injury and repair, a loss in any part of the body stimulates the tissue of the same kind to new growth and the loss is thus repaired; it is a.s.sumed that the cell receptors which combine with the toxine are lost for the cell which then produces them in excess. The receptors so produced pa.s.s into the blood, where they combine with the toxine which has been absorbed; the combination is a stable one, and the toxine is thus prevented from combining with the tissue cells. The ant.i.toxine which is formed during the disease, and the production of which in the horse can be enormously stimulated by the injection of toxine, represents merely the excess of cell receptors, and when the serum of the horse containing them is injected in a case of diphtheria the same combination takes place as in the case of receptors provided by the patient. In the case of the destruction of bacteria in the blood by the action of amboceptor and complement, the amboceptor must be able to combine with both the bacterial cell and the complement which brings about its destruction, and just as ant.i.toxine is formed so new amboceptors may be formed.

Few hypotheses have been advanced in science which are more ingenious, in better accord with the facts, have had greater importance in enabling the student to grasp the intricacies of an obscure problem, and which have had an equal influence in stimulating research. The immunity which results from disease in accordance with this theory, is due not to conditions preventing the entrance of organisms into the body, but to greater apt.i.tude on the part of the cells to produce these protective substances having once learned to do so. An individual need not practise for many years, having once learned them, those combinations of muscular action used in swimming; but the habit at once returns when he falls into the water.

Infectious diseases and recovery are phases of the struggle for existence between parasite and host, and ill.u.s.trate the power of adaptation to environment which is so striking a characteristic of living matter.

FOOTNOTES:

[1] The comparison here is with the atrium of a Pompeiian house.

CHAPTER VIII

SECONDARY, TERMINAL AND MIXED INFECTIONS.--THE EXTENSION OF INFECTION IN THE INDIVIDUAL.--TUBERCULOSIS.--THE TUBERCLE BACILLUS.--FREQUENCY OF THE DISEASE.--THE PRIMARY FOCI.--THE EXTENSION OF BACILLI.--THE DISCHARGE OF BACILLI FROM THE BODY.--INFLUENCE OF THE SEAT OF DISEASE ON THE DISCHARGE OF BACILLI.--THE INTESTINAL DISEASES.--MODES OF INFECTION.--INFECTION BY SPUTUM SPRAY.--INFECTION OF WATER SUPPLIES.--EXTENSION OF INFECTION BY INSECTS.--TRYPANOSOME DISEASES.--SLEEPING SICKNESS.--MALARIA.--THE PART PLAYED BY MOSQUITOES.--PARASITISM IN THE MOSQUITO.--INFECTION AS INFLUENCED BY HABITS AND CUSTOMS.--HOOKWORM DISEASE.--INTER-RELATION BETWEEN HUMAN AND ANIMAL DISEASES.--PLAGUE.--PART PLAYED BY RATS IN TRANSMISSION.--THE PRESENT EPIDEMIC OF PLAGUE.

The infectious diseases are often complicated by secondary infections, some other organism finding opportunity for invasion in the presence of the injuries produced in the primary disease. In many diseases, such as diphtheria, scarlet fever and smallpox, death is frequently due to the secondary infection. The secondary invaders not only find local conditions favoring a successful attack, but the activity of the tissue cells on which the production of protective substances essentially depends has suffered by the primary infection, or the cells are occupied in meeting the exigencies of this. The body is in the position of a state invaded by a second power where all its forces and resources are engaged in repelling the first attack.

What are known as terminal infections occur shortly before death. No matter what the disease which causes death, in the last hours of life the body usually becomes invaded by organisms which find their opportunity in the then defenceless tissues, and the end is often hastened by this invasion.

There are also mixed infections in which two different organisms unite in attack, each in some way a.s.sisting in the action of the other. The best known example of this is in the highly infectious disease of swine known as hog cholera. It has been shown that in this disease two organisms are a.s.sociated,--one an invisible and filterable organism, and the other a bacillus. It was first supposed that the bacillus was the specific organism; it was found in the lesions and certain, but not all, the features of the disease were produced by inoculating hogs with pure cultures. The disease so produced is not contagious, and the contagious element seems to be due to the filterable virus.

The modes of transmission of infectious diseases are of great importance and are the foundation of measures of public health. In the preceding chapter we have seen that in the infected individual the disease extends from one part of the body to another. There is a primary focus of disease from which the extension takes place, and the study of the modes of extension in the individual throws some light on the much more difficult subject of the transmission of disease from one individual to another. There are four ways by which extension in the individual may take place.

1. By continuity of tissue, an adjoining tissue or organ becoming infected by the extension of a focus of infection.

2. By means of lymphatics. Organisms easily enter these vessels which are in continuity with the tissue s.p.a.ces and receive the exudate from the focus of infection. The organisms are carried to the lymph nodes, which, acting as filters, retain them and for a time prevent a further extension. The following ill.u.s.trates the importance of the part the nodes may play in mechanically holding back a flood of infection. A physician examined after death the body of a person who died from infection with a very virulent micrococcus and in the course of the examination slightly scratched a finger. One of the organs of the body was removed, sent to a laboratory and received by a laboratory worker, a woman physician, who had slight abrasions and fissures in the skin of the hands from contact with irritating chemicals. In the course of a few hours the wound on the finger of the man became inflamed, intensely painful, and red lines extended up the arm in the course of the lymphatic vessels, showing that the organisms were in the lymphatics and causing inflammation in their course. The lymph nodes in the armpit into which these vessels empty became greatly inflamed, swollen, and an abscess formed in them which was opened. There was high fever, great prostration, a serious illness from which the man did not recover for several months. The woman only handled the organ which was sent to the laboratory in order to place it in a fluid for preservation. She also had a focus of infection of a finger with the same red lines on the arm, showing extension by the lymphatics; but there was no halt of the infection in the armpit, for all the lymph nodes there had been removed several years before in the course of an operation for a tumor of the breast. A general infection of the blood took place, there was very high fever, and death followed in a few days. The halt of the infection is important in allowing time for the body to make ready its means of defence. One cannot avoid comparing the lymph node with a strong fortress thrown in the path of a victorious invading army behind which the defenders may gather and which affords them time to renovate their strength.

3. By means of the blood. The blood vessels are universally distributed, the smaller vessels have thin walls easily ruptured and easily penetrated. It is probable that in every infection some organisms enter the blood which, under usual conditions, is peculiarly hostile to bacteria. These may, however, be carried by the blood to other organs and start foci of infection in these.

4. By means of continuous surfaces. The bacteria may either grow along such surfaces forming a continuous or more or less broken layer, or may be carried from place to place in the fluids which bathe them.

All these modes of extension are well shown in tuberculosis. This disease is caused by a small bacillus which does not produce spores, has no power of saphrophytic growth under natural conditions, and is easily destroyed. Moisture and darkness are favorable conditions for its existence, sunlight and dryness the reverse. There are three varieties or strains of the tubercle bacilli which infect respectively man, cattle and birds, and each cla.s.s of animals shows considerable resistance to the varieties of the bacillus which are most infectious for the others.

The primary seat of the infection in man is generally in the upper part of the lung. The organisms settle on the surface here and cause multiplication of the cells and an inflammatory exudate in a small area. With the continuous growth of the bacilli in the focus, adjoining areas of the lung become affected, and there is further extension in the immediate vicinity by means of the lymphatics. Small nodules are formed and larger areas by their coalescence. Infection with tuberculosis is so common that at least three-fourths of all individuals over forty show evidences of it. The examination of two hundred and twenty-five children of the average age of five years who had died of diphtheria showed tuberculous infection in one-fifth of the cases and the frequency of infection increases with age. The defence on the part of the body is chiefly by the formation of dense ma.s.ses of cicatricial tissue which walls off the affected area and in which the bacilli do not find favorable conditions for growth. This mode of defence, which is probably combined with the production of substances antagonistic to the toxines produced by the bacilli, is so efficacious that in the great majority of cases no further extension of the process takes place. In certain cases, however, the growth of the bacilli in the focus is unchecked, the tissue about them is killed and becomes converted into a soft semi-fluid material; further extension then takes place. All parts of the enormous surface of the lungs are connected by means of the system of air tubes or bronchi, and the bacilli have favorable opportunity for distribution, which is facilitated by sudden movements of the air currents in the lung produced by coughing. The defence of the body can still keep pace with the attack, and even in an advanced stage the infection can be checked in some cases permanently; in others the check is but temporary, the process of softening continues, and large cavities are produced by the destruction of the tissue. On the inner surface of these cavities there may be a rapid growth of bacilli.