Part 17 (1/2)
Several churches suffered to a similar extent, while, at the Midland Railway Station, all the seven chimney-stacks were shattered. At Dinedor, Fownhope, Dormington, Withington, and a few other villages, the damage was also relatively greater than elsewhere, these places all lying within a small oval about 8-1/2 miles long, which surrounds, not the centre, but rather the north-west focus, of the isoseismal 8.
The isoseismal 7, which includes places where the shock was strong enough to overthrow ornaments, vases, etc., is also very nearly an ellipse, whose axes are 80 and 56 miles in length, and whose area is 3,580 square miles. Its longer axis, running from W. 42 N. to E. 42 S., is practically parallel to that of the inner curve. Next in succession comes the isoseismal 6, surrounding those places where the shock was strong enough to make chandeliers, pictures, etc., swing; but, as most of the observers seem to have slept in darkened rooms, the number of determining points for this curve is less than usual, and its course is therefore laid down with a somewhat inferior degree of accuracy. The error, however, is probably small, and we may therefore regard the isoseismal 6 as another ellipse, 141 miles long, 116 miles broad, and containing an area of 13,000 square miles. Its longer axis is again nearly parallel to those of the preceding isoseismals.
The next two isoseismals are nearly circular in form. It will be noticed that large portions of them, and especially of the isoseismal 4, traverse the sea. In these parts, the paths of the curves are to some extent conjectural. In drawing them, the chief guides are their trend before leaving the land and the known intensity along the neighbouring coastlines. The isoseismal 5 bounds the area within which the shock was perceptible as a sensible displacement and not merely a quiver. Its dimensions are 233 miles from north-west to south-east, and 229 miles from south-west to north-east, and its area 41,160 square miles. The isoseismal 4, which includes places where the shock was strong enough to make doors, windows, etc., rattle, is 356 miles from north-west to south-east, and 357 miles from south-west to north-east, and 98,000 square miles in area; its centre coincides nearly with that of the small oval area in the neighbourhood of Hereford, where the damage to buildings was relatively greater than elsewhere.
Outside the isoseismal 4, the earthquake was observed at several places. The shock was certainly felt at Middlesbrough, 12-1/2 miles from the curve, and probably at Killeshandra (in Ireland), 65 miles distant. Thus, if we consider the boundary of the disturbed area to coincide with the isoseismal 4, its area would be 98,000 square miles, or 1-2/3 that of England and Wales; if it were a circle concentric with the isoseismal 4, and pa.s.sing through Middlesbrough, its area would be 115,000 square miles, or nearly twice that of England and Wales; while, if it pa.s.sed through Killeshandra, its area would be 185,000 square miles, or more than three times the area of England and Wales.[62]
_Position of the Originating Fault._--The form, directions, and relative positions of the isoseismal lines furnish important evidence with regard to the originating fault. We conclude in the first place that its mean direction is parallel to the longer axes of the three innermost isoseismal lines--that is, north-west and south-east, or, more accurately, W. 43 N. and E. 43 S.[63] In this case, the elongated forms of the isoseismal lines cannot be attributed to variations in the nature of the surface rocks. The district embraced contains about 13,000 square miles, and it is improbable that the axes of the three isoseismals should retain their parallelism over so large an area, if these variations had any considerable effect. Moreover, in the same district, an earthquake occurred in 1863, whose meizoseismal area was elongated from north-east to south-west, or almost exactly perpendicular to the direction in 1896.
Secondly, it will be noticed (Fig. 60) that the isoseismal lines are not equidistant from one another. On the north-east side, they are separated by distances of 20, 34, 55, and 51 miles; and on the south-west side by distances of 13-1/4, 25, 60, and 77 miles. It follows from this that the fault-surface must hade or slope towards the north-east; for, near the epicentre, the intensity is greatest and dies out more slowly on the side towards which the fault hades.
If we could ascertain any one place through which the fault pa.s.sed, its position would thus be completely determined. Unfortunately, there is no decisive evidence on this point. There are, however, several places to the south-west of Hereford where the intensity of the shock was distinctly less than in the surrounding district, and it is possible that this was due to their neighbourhood to the fault-line (see p. 135). If so, the originating fault must have extended from a point about a mile and a half west of Hereford for a distance of about 16 miles to the south-east; and a fault in this position would certainly satisfy all the details of the seismic evidence.
NATURE OF THE SHOCK.
Throughout the disturbed area, considerable variations were observed in the nature of the shock. These changes were due to the mere size of the focus, to its elongated form and, as will be seen, to its discontinuity, and also to the distance of the place of observation from the epicentre.
At places near the epicentre, rapid changes in the direction of the shock were observed owing to the large angle subtended by the focus; while, at considerable distances, this angle being small, the changes of direction were imperceptible. A further variation with the distance was an increase in the period of the vibrations. Close to the epicentre, the general impression was that of crossing the wake of a steamer in a very short rowing-boat, or of riding in a carriage without springs. At distances of a hundred miles or more, the movement is described as being of a pleasant, gentle, undulating character, like that felt during the rocking of a s.h.i.+p at anchor or in a carriage with well-appointed springs.
The most remarkable feature of the shock, however, was its division into two distinct parts or series of vibrations, separated by an interval, lasting two or three seconds, of absolute rest and quiet.
And this was no mere local phenomenon. With the exception of a narrow band that will be referred to presently, records of the double shock come from nearly all parts of the disturbed area, even from districts so remote as the Isle of Man and the east of Ireland. The two parts differed in intensity, in duration, and in the period of their const.i.tuent vibrations. For instance, at Oaklands (near Chard), a s.h.i.+vering motion was first felt, and then, after about three or four seconds, a distinct rocking from side to side. At Exeter, there was a sudden tremor lasting about two seconds, followed, after two or three seconds, by another and more severe shaking lasting four or five seconds. Again, at West Cross (near Swansea), an undulatory movement for about four seconds was followed soon after by a tremulous shock.
At Liverpool, the durations of the first part, interval, and second part were respectively estimated at about six, two, and four seconds.
As a first result of the observations, then, it appears that in the south-east half of the disturbed area, the second part of the shock was the stronger, of greater duration and consisted of longer-period vibrations (as at _a_, Fig. 61); while, in the north-west half, the same features characterised the first part of the shock (_b_, Fig.
61). A closer examination of the records shows, however, that the boundary between the two portions of the disturbed area was not a straight line, but slightly curved, the concavity facing the south-east. The broken line on the map (Fig. 60), which is hyperbolic in form, represents roughly the position of this curved boundary.[64]
[Ill.u.s.tration: FIG. 61.--Nature of shock of Hereford earthquake.]
Along this hyperbolic boundary-line, or rather within a narrow band of which it is the central line, the shock lost its double character, and was manifested as a single series of vibrations gradually increasing in intensity and then dying away. Close to the edges of this band, careful observers were able to distinguish two maxima of intensity connected by a continuous series of tremors (_c_, Fig. 61). Thus, within the band, the two series of vibrations, which elsewhere were isolated, must have been superposed on one another; while, near the edges of the band, the concluding tremors of the first series overlapped the initial tremors of the second.
_Origin of the Double Series of Vibrations._--The Hereford earthquake thus belongs to the same cla.s.s as the Neapolitan, Andalusian, Charleston, and Riviera earthquakes. As in these cases, the hypothesis of a single focus is inadmissible. The division of the disturbed area into two regions of opposite relative intensity, duration, etc., is sufficient proof that a single series of vibrations was not duplicated by reflection or refraction, or by separation into longitudinal and transverse waves. It is equally conclusive against a repet.i.tion of the impulse within the same focus. We must therefore infer that the focus consisted of two nearly or quite detached portions arranged along a north-west and south-east line, and that the impulse at the north-west focus was the stronger of the two. The only question that remains to be decided is whether the impulses at the two foci were simultaneous or not.
Now, if the impulses occurred at the same instant, the waves from the two foci would travel with the same velocity, and would therefore coalesce along a straight band which would bisect at right angles the line joining the two epicentres. But we have already seen that this band is curved, and it thus follows that the two impulses were not simultaneous. Again, since the concavity of the hyperbolic band faces the south-east, the waves from the north-west focus must have travelled farther than those from the south-east focus before the two met along the hyperbolic band; in other words, the impulse at the north-west focus must have occurred two or three seconds before the impulse at the other.
_Position and Dimensions of the Two Foci._--There can be little doubt that the impulse at the north-west focus was responsible for the greater damage to buildings at Hereford, Dinedor, Fownhope, etc. The centre of its epicentral area must therefore lie about three miles south-east of Hereford. It is probable, also, that the corresponding centre of the other focus is similarly placed with respect to the south-east portion of the isoseismal 8--that is, about two or three miles north-east of Ross. These two points are eight or nine miles apart. Now, since, as we shall see, the mean surface-velocity of the earth-waves was about 3000 feet per second, and the mean duration of the quiet interval between the two series was 3-1/2 seconds, the nearest ends of the two foci must have been separated by a distance of not less than two miles. Moreover, since the series of vibrations from the north-west or Hereford focus lasted a few seconds longer than that from the south-east or Ross focus, the former must have been about two miles longer than the latter, and we may therefore estimate their lengths at about eight and six miles respectively. Including the undisturbed intermediate portion, this would give a total length of focus of about 16 miles, a result we have already inferred from the dimensions of the isoseismal 8.
DIRECTION OF THE SHOCK.
Although no question was asked with regard to the direction of the shock, no fewer than 469 observers made notes on this point. As a general rule, their determinations are extremely rough, few referring to more than the eight princ.i.p.al points of the compa.s.s. Moreover, in any one place, the directions a.s.signed to the shock are very varied.
For instance, in the city and suburbs of Birmingham, eight observers give the direction along a north and south line, eight east and west, eleven north-west and south-east, and five north-east and south-west, while there are five other intermediate estimates. But, when these directions are plotted on a map of the district, it is seen at once that they are either nearly parallel or perpendicular to the roads in which the observers were living; that is, the apparent direction of the shock was at right angles to one of the princ.i.p.al walls of the house. This, of course, is a result to be antic.i.p.ated, for, whatever be the direction of the earthquake-motion, a house tends to oscillate in a plane perpendicular to one or other of its walls.
It is extraordinary to how great a distance the direction of the shock is perceptible. Records come from Brighton (137 miles from the epicentre), Maldon in Ess.e.x (144 miles), Harrogate (147 miles), Douglas in the Isle of Man (167 miles), Dublin (176 miles), and Baltingla.s.s in Co. Wicklow (180 miles).
Nevertheless, whatever the distance may be, the sense of direction must be most perceptible in those houses whose princ.i.p.al walls are at right angles to the true direction of the earthquake-motion, and we should therefore expect to find the observations of direction most frequently made in such houses, or in others which approximate to this situation. Thus, the average of all the observations within a fairly small area should give a result not very far from the true direction of the shock; and, the smaller the area and the farther from the epicentre, the more reliable should be the result. Now, in Birmingham the mean direction of the shock is E. 39 N., which differs only by 2 from the line joining the city to the epicentre; in London it is E.
21 S., the difference being again 2. In other cases, the observations from different counties are grouped together, and the mean direction is taken to correspond to the centre of the county.
Yet, even then, there is often a close agreement between the mean direction of the shock and the direction of the county-centre from the epicentre; the difference being not more than two or three degrees in the counties of Buckingham, Devon, Stafford, Warwick, and York. In other cases, where the deviation exceeds this amount, either the number of observations is small or the county is near the epicentre and so subtends a large angle.
Two results of some importance follow from this a.n.a.lysis: (1) that while, with a few isolated observations, the ”method of directions” is almost sure to fail, with a large number of observations closely grouped, the position of the epicentre may be determined with a fair approach to accuracy; and (2) that, at any rate outside a radius of forty miles, the earth-waves travelled in approximately straight lines outwards from the epicentre.