Part 26 (1/2)

I have found that people with digestive disturbances, endocrine gland imbalances, blood sugar imbalances, diabetes, obesity, cholesterol excesses, stress-related problems, and arthritic inflammations all seem to benefit from enzyme supplementation. Dr. W.W. Oelgoetz has shown that partially digested fats, protein, and carbohydrate molecules get into the blood system when the blood enzymes become too low. He observed that when he gives clients oral supplements of amylase, lipase, and proteases, the allergies which seem to be a.s.sociated with these incompletely digested molecules subside. Thus, enzyme supplementation can be a support to the immune system.

Enzymes help the detoxification process because they free up more metabolic enzyme energy for this work.

Health-promoting use of proteolytic enzymes.

Summary of the Importance of Enzymes.

AT THIS POINT A SUMMARY ON THE IMPORTANCE OF ENZYMES would be helpful. Enzymes contain the power of the life force itself. Eating a live-food diet helps to maintain the quality and quant.i.ty of our enzyme pool and therefore maintain our health and longevity. Enzymes are not simply catalysts that make digestion and all metabolic processes work; they are living proteins that direct the life force into our basic biochemical and metabolic processes. They even help repair our DNA and RNA. Enzymes help transform and store energy, make active hormones, partic.i.p.ate in their own production cycle, dissolve fibrin and thus prevent clotting, and have anti-inflammatory effects, anti-edematous effects, and even a.n.a.lgesic effects. The research suggests they also balance and enhance the immune system; help to heal cancer, multiple sclerosis, rheumatoid diseases, and arthritis; minimize the effect of athletic injuries; decrease injury recovery time; and aid with digestion.

Many enzymes work within the cellular structures, such as in the cell nucleus with the DNA/RNA or mitochondria (the energy factories in the body). Some enzymes move freely within the body fluids, such as during digestion or in the serum of our blood. Many of the free enzymes, especially proteases, are bound to transport proteins in the serum. These binding proteins, alpha globulins, transport the enzymes and other molecules to various parts of the body to regulate all body processes.

I divide enzymes into seven major biochemical cla.s.ses. One cla.s.s is oxi-doreductases, needed for biological oxidation and such processes as the making of ATP and protection from free radicals. Some members of this cla.s.s include dehydrogenases, oxidases, and oxygenases. A second cla.s.s is called transferases, which transfer chemical groups from one molecule to another. A third cla.s.s is called hydrolysases. They cleave chemical bonds and add water in the process. They catalyze the breaking of ester bonds in fatty acids, split amino acid bonds in proteins, and cleave glycoside bonds. These include proteases, glycosides, and esterases. A fourth cla.s.s is isomerases. These help to rearrange chemical groups within the same molecule. A fifth cla.s.s is lyases, which cleave double bonds between two atoms. The sixth group is called ligases; they catalyze the formation of a bond between two molecules. These include DNA lipase, synthetases, and carboxylases. The seventh cla.s.s of enzymes is digestive enzymes. These include proteases, which digest proteins, amylases, which help digest carbohydrates, and lipases, which digest fats. They are made up of enzyme types from some of the other cla.s.ses.

With age, under stress, or after illness, the amount of enzymes decreases in our bodies. Enzymes are critical for our health. As they diminish, our ability to perform the tasks which keep the body healthy also diminishes. Aging happens when enzymes decrease in concentration in the body. Some enzyme researchers and live-food teachers like Ann Wigmore believe that enzyme preservation is the secret to longevity.

One way to preserve the body's store of enzymes is to eat living or raw foods because foods in their natural state are loaded with digestive and other enzymes. Another way to enhance the enzyme pool is by adding natural digestive enzymes to support digestion and create even less of an enzyme drain on the system. One may also take proteolytic enzymes which break proteins down into free amino acids. These include protease enzymes, bromelain, and papain between meals on a regular basis, or certain mixtures of enzymes therapeutically. Over time, I have become more impressed with the effectiveness of adding enzymes to the system as a natural anti-aging, preventive measure and/or for therapeutic reasons. This includes digestive enzymes in general and proteolytic enzymes specifically

Origin of Enzyme Therapy.

THE ORIGIN OF ENZYME THERAPY can be traced back to the indigenous peoples of Central and South America, who used the leaves and fruit of papaya and pineapples therapeutically for thousands of years. Enzymes were used in Africa and India. The Bible mentions the use of figs, which are high in enzymes, for healing. A specific example was the prophet Isaiah's use of figs and blessings to help heal King Hezekiah. The curative effect of many plants and fruits used in the Middle Ages was due to the proteases in them.

In 1900, the Scottish physician John Beard began to treat cancer patients with enzymes of plants and enzymes from the pancreases of freshly killed animals. Following him was Max Wolf, an Australian-born physician who is considered the father of systemic enzyme therapy. He, along with Helen Benitez, a cell biologist, was able to explore and develop proteolytic enzyme preparations for therapeutic uses, especially for the treatment of cancer.

Wolf also believed that premature aging, with all its secondary symptoms, is based on a deficiency of these enzymes. Wolf theorized that the key element of most aging processes is a disturbance in physiological and regulatory mechanisms of the body. He understood that enzymes are critical for the proper functioning of the body's regulatory mechanisms, including the immune system. In 1960, enzyme combinations were introduced in Germany to help with the body's regulatory and immune system. Building up the enzyme reserve for health and anti-aging effects is not a new concept. The benefits of the live-food lifestyle are supported by this scientific research. I am not just talking about enzymes as a metaphor.

The main enzymes involved in these regulatory functions are called proteases. These enzymes cleave proteins and are technically called proteolytic hydrolyses. Wolf's work was initally done with selected animal and plant proteases. Today, enzyme combinations based solely on high concentrations of plant proteolytic enzymes are available. Each protease has its own general specialty because each works on different protein complexes. For example, bromelain from pineapple is better than papain from papaya and trypsin and chymotrypsin from animals for reducing swelling and edema. Bromelain is not as good as papain for breaking up antigen-antibody complexes, or for cell receptor modulation. Protease function in the body is controlled by sequences of connecting enzymes. For example, at least five enzymes are needed for blood to clot, and five other enzymes are needed to dissolve the clotted blood.

Enzymes are directed by carrier molecules that transport the enzymes to where they are needed in the body and regulate their activity. The two most common of these enzyme carriers are alpha-1 anti-trypsin and alpha-2-macroglobulin (A-2M). These proteins' globulins are called anti-proteases because they temporarily bind these enzymes and keep them inactive. These protease and anti-protease complexes have their own particular functions.

Enzymes taken orally have been shown to absorb directly through the GI tract. Research over the past three decades around the world has definitively proven that specific enzymes administered orally are absorbed through the gastrointestinal system and have systemic effects throughout the human body. This understanding is widely accepted in Europe, j.a.pan, and China, but unfortunately, most American physicians are not aware of this. Researchers have found that there are even special regions in the small intestine such as Peyer's patches where some of the largest enzymes are absorbed more rapidly than smaller enzyme molecules. Approximately 6% of papain and 38% of bromelain taken orally is found to be active in the blood and lymph. If they are to be effective, large amounts of protease enzymes need to be taken. At least 12% of the proteolytic enzymes are absorbed. They are best taken one hour before or two hours after meals with eight ounces of water. In 1992 in Germany more than 1.4 million prescriptions of enzyme combinations were made with no side effects reported, with the exception of rare allergic reactions. Some changes in bowel movement smell and consistency, nausea, or gas may occur until the proper enzyme intake level is found.

There are conditions and times when it is best not to take enzyme therapy: Before going into surgery, which might involve blood loss because of the anti-clotting power of enzymes.

People with congenital disturbances in blood coagulation, such as hemophilia or coagulatory disturbances secondary to liver or kidney disease.

People taking anti-coagulants or thrombocyte aggregation inhibitors such as acetylsalicylic acid.

During pregnancy.

People with allergies to proteins.

Enzymes seem to be effective in the prevention and treatment of cancer, auto-immune diseases, vascular diseases, inflammations, injuries, infections, stress, and rheumatic diseases. Research to show their effect against cancer existed as early as 1907. Research showing their effectiveness for inflammations, joint pain, and edemas started in the sixties.

Enzymes Are Effective Immune System Modulators.

THE CENTRAL UNDERSTANDING about why enzymes can help with so many imbalances is that they are immune modulators or biological response modifiers. They help control the regulatory mechanisms of the immune system. They can stimulate the immune system if needed, regenerate the immune system, or even act to inhibit an overactive immune system such as what we see with auto-immune disease. In other words, enzymes act to normalize the immune system in a variety of ways. For example, they help to regulate the anti-protease globulin system, which includes A-2M, involved in the regulation of the cytokine function of the immune system.

Proteolytic enzymes are able to stimulate the mononuclear phagocyte system (MPS) by bonding to A-2M globulins. When proteases are added to the system, the cells of the MPS are stimulated. The MPS cells protect the mucous membranes of the small intestine, v.a.g.i.n.a, the eyes, and skin, and as macrophages they can travel on their own through the tissues, engulfing and destroying foreign material.

According to research reported in Enzymes: The Fountain of Life by Lopez, Williams, and Miehlke, proteolytic enzymes increase the activity of macrophages by up to 700% and natural killer (NK) cells by 1300% in cell culture within a few minutes. This activation effect has also been found in human experimentation. Proteolytic enzymes have been found to stimulate the peripheral blood mononuclear cells (PBMC), which include the precursors to macrophages, part of the scavenger process of the immune system. These enzymes also stimulate the PBMC cells to secrete cytokines, which help to enhance the immune system.

Proteolytic enzymes are important for the degradation of immune complexes as well. These immune complexes are often a.s.sociated with inflammation and swelling in rheumatism. The vegetarian enzymes-lipases, papain, amylase, and proteases-and the animal enzymes-pancreatin and trypsin-all help protect the body from an overactive immune system. They also prevent worn-out cells from being treated as foreign cells, as in auto-immune disease settings.

On the surface of cells is a variety of receptor sites that affect intercellular communication. Various immunological reactions can be modulated by changing the receptors. An excess production of these cell receptors or an underproduction of surface receptors can unbalance immune system communication. Enzymes, depending on the need, can increase or decrease the amount of these cell surface receptors and thus balance the immune system. The cell surface molecules are important in cancer metastasis, because cancer cells make use of specific adhesion molecules or receptors to migrate into the surrounding tissues. Proteolytic enzymes inhibit the function of these adhesion molecules so the rate of metastases is inhibited. Research has shown that proteolytic enzymes inhibit the CD44 cell surface receptors that are found to be responsible for enhancing the metastasis of cancer of the breast and large intestine. Proteolytic enzymes have also been shown to inhibit the adhesion molecule vitronectin that supports the metastasis of malignant melanomas.

Research has shown that when certain cells in the immune system are treated with enzymes, they make more cell messenger substances or cytokines, which play an important role in the regulation of immunological reactions. About twenty different cytokines have been identified so far. They include tumor necrosis factor (TNF), interleukins, monokines, and interferons. These cytokines are very important for the proper functioning of the immune system.

Because proteolytic enzymes are so critical in the regulation and normalization of the immune system, they are important not only for the prevention and treatment of cancer, but also auto-immune diseases, rheumatological problems, multiple sclerosis, skin diseases, and allergies. Enzymes are critical for the maintenance of all systems effective in defending the organism.

Therapeutic Uses of Proteolytic Enzymes.

ENZYME THERAPY HAS MANY OTHER HEALING EFFECTS in addition to its effect on the immune system. It improves blood circulation in a variety of ways. It makes the red blood cells more flexible and diminishes their tendency to clump. Fibrinogen increases with age, chronic disease, diabetes, and cancer. An increased fibrin in the blood decreases flow by making the blood more viscous, thereby increasing the potential of clotting. Enzymes decrease the fibrinogen in the blood and therefore improve blood flow. Enzymes also act like aspirin to decrease thrombocyte clumping and therefore the danger of blood clots, strokes, and heart attacks. They are much safer than aspirin, however.

Enzymes have anti-inflammatory effects and so decrease pain. With tissue injury there is a release of inflammation mediators which dilate the capillaries at the injury site. Plasma proteins travel into the tissues and carry water with them, causing swelling or edema. Fibrin formation is also activated, which further slows circulation. Proteolytic enzymes break down the fibrin, plasma proteins in the tissues, and the cellular debris, thereby decreasing swelling and pain and making it easier for the lymphatic system to carry away the debris. The other enzyme mechanism for decreasing pain is through degrading the inflammatory mediators, since active mediators such as the kinins and prostaglandins stimulate a pain response. In this way enzymes are a.n.a.lgesic.

Enzymes have no side effects, stimulate the immune system, and promote tissue regeneration, rather than slow the process like conventional anti-inflammatory medicines. One study of the use of enzymes in sport injuries done with ice hockey players in the German national hockey league by Dr. Sepp Worschauser, a team physician, showed that the prophylactic administration of enzymes helped to heal one-third to one-half more quickly and led to shorter absences from training. The typical symptoms of swelling and pains following usual sport bruises and sprains were minimized as compared to the normal post-injury responses without enzyme treatment. Athletes who used enzymes prophylactically definitely had less muscle soreness. The enzymes were effective if taken one hour before the athletic event.

Proteolytic enzymes minimize a variety of other inflammatory processes. A number of these inflammations even respond better to enzymes than to cortisone and other anti-inflammatory drugs. Proteolytic enzymes have to be rated as excellent for inflammatory swelling and hematomas. They are good for healing inflammation of the respiratory tract, such as with constant bronchitis and acute constant sinusitis. They reduce the swelling of mucous membranes and dissolve micro thrombi and fibrin deposits in the membranes. Proteolytic enzymes help with inflammation of the ovaries and fallopian tubes from external infection or anti-immune causes and thus are good for pelvic inflammatory disease and endometriosis. They are excellent for the treatment of acute and chronic prostat.i.tis as well as infection of the urinary tract. They are even effective in chronic pancreat.i.tis.

Enzymes should not be taken 24 hours before an operation where there could be blood loss, but taken 36-48 hours later they help to speed recovery and decrease swelling and hematomas post-operatively Perhaps most important is their ability to keep post-operative blood clots from forming or to dissolve them if they have formed.

In dental surgery, enzyme therapy has been quite successful. Proteolytic enzyme treatment should begin 48 hours before and continue until the seventh day post-operatively. One study showed that people were able to eat comfortably within two to three days after a wisdom tooth was pulled as compared to the usual ten or twelve days. In all the studies, there was no excess bleeding during the tooth extraction when the enzyme therapy was begun 48 hours before the operation. They also help protect against infection.

Enzymes are very important in the prevention of blood clots and almost all vascular disease. In a society where over one-half the population dies from atherosclerosis and approximately 50% of the population over age fifty has varicose veins, enzymes used prophylactically make good sense. With age, the plasmin-producing cells in the walls of the arteries that prevent clotting decrease in number. Because of this there is a general tendency for the clotting mechanism to produce more fibrin, a substance that makes the blood more sticky and thus more likely to clot. Clotting is increased by arte-riosclerotic changes in the artery wall, increased blood viscosity, decreased blood flow, and increased tendency to make fibrin. Damage to the artery wall is one of the primary causes of arterial clots. Venous thrombosis is more likely to happen from increased viscosity and decreased blood flow and/or hypercoagulability In arteries, enzyme therapy reduces the tendency to form clots and improves all limitations to circulation. Proteolytic enzymes make the red blood cells more elastic, help keep red blood cells and platelets from sticking together, degrade micro thrombi that may stick to the artery wall, and have an anti-inflammatory effect on blood vessel walls. Enzymes are far safer and have a greater range of effects than aspirin.

Enzymes have been used to prevent existing vascular disease from progressing. They also help to neutralize the auto-immune aspects of arteriosclerosis by dissolving the auto-antibodies and immune complexes that form against blood lipids that lodge in the artery wall and cause inflammation and atherosclerotic plaque. Enzyme intake on a regular basis prevents an immune reaction inflammation that can damage the blood vessel wall, compared to aspirin that only works to prevent platelet aggregation.

In addition, enzyme therapy seems to increase the healthy high-density lipids and decrease cholesterol and triglyceride levels. For constant venous circulation problems like thrombophlebitis and varicose veins, enzyme treatment improves blood flow, reduces swelling, degrades micro clots, and inhibits inflammation, muscle pain, and cramping pain in as short a time as four weeks. Deep vein thromboses in their acute stage are more safely treated in a medical clinic with bed rest. Sometimes the enzymes urokinase and streptokinase can be injected to dissolve the clot in the acute phase. Oral enzyme therapy by itself is most effective after the acute stage pa.s.ses. Enzyme therapy also was found to inhibit post-thrombotic syndrome (PTS) pain, swelling, and scarring. In one study of 445 patients done by Dr. Otto Kar Ritansky of Vienna, Austria, in which he used enzymes and ozone therapy, excellent results were achieved for decreasing pain, healing tissue, improving walking distance, and preventing amputation.