Part 34 (1/2)
91. 91. Helen Pearson, ”Construction Bugs Find Tiny Work,” Helen Pearson, ”Construction Bugs Find Tiny Work,” Nature News Nature News, July 11, 2003, /news/2003/030707/full/030707-9.html.
92. 92. Richard E. Smalley, ”Nanofallacies: Of Chemistry, Love and Nan.o.bots,” Richard E. Smalley, ”Nanofallacies: Of Chemistry, Love and Nan.o.bots,” Scientific American Scientific American 285.3 (September 2001): 7677; subscription required for this link: /browse.cfm?sequencenameCHAR=item2&methodnameCHAR=resource_get.i.tembrowse&interfacenameCHAR=browse.cfm&ISSUEID_CHAR=6A628AB3-17A5-4374-B100-3185A0CCC86&ARTICLEID_CHAR=F90C4210-C153-4B2F-83A1-28F2012B637&sc=I100322. 285.3 (September 2001): 7677; subscription required for this link: /browse.cfm?sequencenameCHAR=item2&methodnameCHAR=resource_get.i.tembrowse&interfacenameCHAR=browse.cfm&ISSUEID_CHAR=6A628AB3-17A5-4374-B100-3185A0CCC86&ARTICLEID_CHAR=F90C4210-C153-4B2F-83A1-28F2012B637&sc=I100322.
93. 93. See the bibliography of references in notes 108 and 109 below. See also Drexler, See the bibliography of references in notes 108 and 109 below. See also Drexler, Nanosystems Nanosystems, for his proposal. For sample confirmations, see Xiao Yan Chang, Martin Perry, James Peploski, Donald L. Thompson, and Lionel M. Raff, ”Theoretical Studies of Hydrogen-Abstraction Reactions from Diamond and Diamondlike Surfaces,” Journal of Chemical Physics Journal of Chemical Physics 99 (September 15, 1993): 474858. See also L. J. Lauhon and W. Ho, ”Inducing and Observing the Abstraction of a Single Hydrogen Atom in Bimolecular Reaction with a Scanning Tunneling Microscope,” 99 (September 15, 1993): 474858. See also L. J. Lauhon and W. Ho, ”Inducing and Observing the Abstraction of a Single Hydrogen Atom in Bimolecular Reaction with a Scanning Tunneling Microscope,” Journal of Physical Chemistry Journal of Physical Chemistry 105 (2000): 398792; G. Allis and K. Eric Drexler, ”Design and a.n.a.lysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis,” 105 (2000): 398792; G. Allis and K. Eric Drexler, ”Design and a.n.a.lysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis,” Journal of Computational and Theoretical Nanoscience Journal of Computational and Theoretical Nanoscience 2.1 (MarchApril 2005, in press). 2.1 (MarchApril 2005, in press).
94. 94. Lea Winerman, ”How to Grab an Atom,” Lea Winerman, ”How to Grab an Atom,” Physical Review Focus Physical Review Focus, May 2, 2003, focus.aps.org/story/v11/st19, reporting on Noriaki Oyabu, ”Mechanical Vertical Manipulation of Selected Single Atoms by Soft Nanoindentation Using a Near Contact Atomic Force Microscope,” Physical Review Letters Physical Review Letters 90.17 (May 2, 2003): 176102. 90.17 (May 2, 2003): 176102.
95. 95. Robert A. Freitas Jr., ”Technical Bibliography for Research on Positional Mechanosynthesis,” Foresight Inst.i.tute Web site, December 16, 2003, foresight.org/stage2/mechsynthbib.html. Robert A. Freitas Jr., ”Technical Bibliography for Research on Positional Mechanosynthesis,” Foresight Inst.i.tute Web site, December 16, 2003, foresight.org/stage2/mechsynthbib.html.
96. 96. See equation and explanation on p. 3 of Ralph C. Merkle, ”That's Impossible! How Good Scientists Reach Bad Conclusions,” /nanotech/impossible.html. See equation and explanation on p. 3 of Ralph C. Merkle, ”That's Impossible! How Good Scientists Reach Bad Conclusions,” /nanotech/impossible.html.
97. 97. ”Thus X ”Thus Xc is just ~5% of the typical atomic electron cloud diameter of ~0.3 nm, imposing only a modest additional constraint on the fabrication and stability of nanomechanical structures. (Even in most liquids at their boiling points, each molecule is free to move only ~0.07 nm from its average position.)” Robert A. Freitas Jr., is just ~5% of the typical atomic electron cloud diameter of ~0.3 nm, imposing only a modest additional constraint on the fabrication and stability of nanomechanical structures. (Even in most liquids at their boiling points, each molecule is free to move only ~0.07 nm from its average position.)” Robert A. Freitas Jr., Nanomedicine Nanomedicine, vol. 1, Basic Capabilities Basic Capabilities, section 2.1, ”Is Molecular Manufacturing Possible?” (Georgetown, Tex.: Landes Bioscience, 1999), p. 39, /NMI/2.1.htm#p9.
98. 98. Robert A. Freitas Jr., Robert A. Freitas Jr., Nanomedicine Nanomedicine, vol. 1, Basic Capabilities Basic Capabilities, section 6.3.4.5, ”Chemoelectric Cells” (Georgetown, Tex.: Landes Bioscience, 1999), pp. 15254, /NMI/6.3.4.5.htm.
99. 99. Montemagno and Bachand, ”Constructing Nanomechanical Devices Powered by Biomolecular Motors.” Montemagno and Bachand, ”Constructing Nanomechanical Devices Powered by Biomolecular Motors.”
100. 100. Open letter from Foresight chairman K. Eric Drexler to n.o.bel laureate Richard Smalley, /Features/Reports/report.aspx?articleID=2004-08-16-1.
104. 104. Charles B. Musgrave et al., ”Theoretical Studies of a Hydrogen Abstraction Tool for Nanotechnology,” Charles B. Musgrave et al., ”Theoretical Studies of a Hydrogen Abstraction Tool for Nanotechnology,” Nanotechnology Nanotechnology 2 (October 1991): 18795; Michael Page and Donald W. Brenner, ”Hydrogen Abstraction from a Diamond Surface: Ab initio Quantum Chemical Study with Constrained Isobutane as a Model,” 2 (October 1991): 18795; Michael Page and Donald W. Brenner, ”Hydrogen Abstraction from a Diamond Surface: Ab initio Quantum Chemical Study with Constrained Isobutane as a Model,” Journal of the American Chemical Society Journal of the American Chemical Society 113.9 (1991): 327074; Xiao Yan Chang, Martin Perry, James Peploski, Donald L. Thompson, and Lionel M. Raff, ”Theoretical Studies of Hydrogen-Abstraction Reactions from Diamond and Diamond-like Surfaces,” 113.9 (1991): 327074; Xiao Yan Chang, Martin Perry, James Peploski, Donald L. Thompson, and Lionel M. Raff, ”Theoretical Studies of Hydrogen-Abstraction Reactions from Diamond and Diamond-like Surfaces,” Journal of Chemical Physics Journal of Chemical Physics 99 (September 15, 1993): 474858; J. W. Lyding, K. Hess, G. C. Abeln, et al., ”UHV-STM Nanofabrication and Hydrogen/Deuterium Desorption from Silicon Surfaces: Implications for CMOS Technology,” 99 (September 15, 1993): 474858; J. W. Lyding, K. Hess, G. C. Abeln, et al., ”UHV-STM Nanofabrication and Hydrogen/Deuterium Desorption from Silicon Surfaces: Implications for CMOS Technology,” Applied Surface Science Applied Surface Science 132 (1998): 221; /Nano/DimerTool.htm; Jingping Peng, Robert A. Freitas Jr., and Ralph C. Merkle, ”Theoretical a.n.a.lysis of Diamond Mechano-Synthesis. Part I. Stability of C 3 (August 2003): 31924, /Nano/DimerTool.htm; Jingping Peng, Robert A. Freitas Jr., and Ralph C. Merkle, ”Theoretical a.n.a.lysis of Diamond Mechano-Synthesis. Part I. Stability of C2 Mediated Growth of Nanocrystalline Diamond C(1lO) Surface,” Mediated Growth of Nanocrystalline Diamond C(1lO) Surface,” Journal of Computational and Theoretical Nanoscience Journal of Computational and Theoretical Nanoscience 1 (March 2004): 6270, /JCTNPengMar04.pdf; David J. Mann, Jingping Peng, Robert A. Freitas Jr., and Ralph C. Merkle, ”Theoretical a.n.a.lysis of Diamond MechanoSynthesis. Part II. C 1 (March 2004): 6270, /JCTNPengMar04.pdf; David J. Mann, Jingping Peng, Robert A. Freitas Jr., and Ralph C. Merkle, ”Theoretical a.n.a.lysis of Diamond MechanoSynthesis. Part II. C2 Mediated Growth of Diamond C('lO) Surface via Si/Ge-Triadamantane Dimer Placement Tools,” Mediated Growth of Diamond C('lO) Surface via Si/Ge-Triadamantane Dimer Placement Tools,” Journal of Computational and Theoretical Nanoscience Journal of Computational and Theoretical Nanoscience 1 (March 2004), 7180, /JCTNMannMar04.pdf. 1 (March 2004), 7180, /JCTNMannMar04.pdf.
106. 106. The a.n.a.lysis of the hydrogen abstraction tool and carbon deposition tools has involved many people, including: Donald W. Brenner, Tahir Cagin, Richard J. Colton, K. Eric Drexler, Fedor N. Dzegilenko, Robert A. Freitas Jr., William A. G.o.ddard III, J. A. Harrison, Charles B. Musgrave, Ralph C. Merkle, Michael Page, Jason K. Perry, Subhash Saini, O. A. Shenderova, Susan B. Sinnott, Deepak Srivastava, Stephen P.Walch, and Carter T. White. The a.n.a.lysis of the hydrogen abstraction tool and carbon deposition tools has involved many people, including: Donald W. Brenner, Tahir Cagin, Richard J. Colton, K. Eric Drexler, Fedor N. Dzegilenko, Robert A. Freitas Jr., William A. G.o.ddard III, J. A. Harrison, Charles B. Musgrave, Ralph C. Merkle, Michael Page, Jason K. Perry, Subhash Saini, O. A. Shenderova, Susan B. Sinnott, Deepak Srivastava, Stephen P.Walch, and Carter T. White.
107. 107. Ralph C. Merkle, ”A Proposed 'Metabolism' for a Hydrocarbon a.s.sembler,” Ralph C. Merkle, ”A Proposed 'Metabolism' for a Hydrocarbon a.s.sembler,” Nanotechnology Nanotechnology 8 (December 1997): 1462, /nanotech/hydroCarbonMetabolism.html. 8 (December 1997): 1462, /nanotech/hydroCarbonMetabolism.html.
108. 108. A useful bibliography of references: Robert A. Freitas Jr., ”Technical Bibliography for Research on Positional Mechanosynthesis,” Foresight Inst.i.tute Web site, December 16, 2003, foresight.org/stage2/mechsynthbib.html; Wilson Ho and Hyojune Lee, ”Single Bond Formation and Characterization with a Scanning Tunneling Microscope,” A useful bibliography of references: Robert A. Freitas Jr., ”Technical Bibliography for Research on Positional Mechanosynthesis,” Foresight Inst.i.tute Web site, December 16, 2003, foresight.org/stage2/mechsynthbib.html; Wilson Ho and Hyojune Lee, ”Single Bond Formation and Characterization with a Scanning Tunneling Microscope,” Science Science 286.5445 (November 26, 1999): 171922, /nanotech/nano4/brennerPaper.pdf; S. P. Walch, W. A. G.o.ddard III, and Ralph Merkle, ”Theoretical Studies of Reactions on Diamond Surfaces,” Fifth Foresight Conference on Molecular Nanotechnology, 1997, /nanotech/nano4/brennerPaper.pdf; S. P. Walch, W. A. G.o.ddard III, and Ralph Merkle, ”Theoretical Studies of Reactions on Diamond Surfaces,” Fifth Foresight Conference on Molecular Nanotechnology, 1997, /cgi-taf/DynaPage.taf?file=/nbt/journal/v21/n8/abs/nbt843.html. Short press release from 21.8 (August 2003): 88590. Published electronically June 29, 2003. Abstract: /cgi-taf/DynaPage.taf?file=/nbt/journal/v21/n8/abs/nbt843.html. Short press release from Nature Nature: /nbt/press_release/nbt0803.html.
113. 113. Richards Grayson et al., ”A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices,” Richards Grayson et al., ”A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices,” IEEE Proceedings IEEE Proceedings 92 (2004): 621; Richards Grayson et al., ”Molecular Release from a Polymeric Microreservoir Device: Influence of Chemistry, Polymer Swelling, and Loading on Device Performance,” 92 (2004): 621; Richards Grayson et al., ”Molecular Release from a Polymeric Microreservoir Device: Influence of Chemistry, Polymer Swelling, and Loading on Device Performance,” Journal of Biomedical Materials Research Journal of Biomedical Materials Research 69A.3 (June 1, 2004): 50212. 69A.3 (June 1, 2004): 50212.
114. 114. D. Patrick O'Neal et al., ”Photo-thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles,” D. Patrick O'Neal et al., ”Photo-thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles,” Cancer Letters Cancer Letters 209.2 (June 25, 2004): 17176. 209.2 (June 25, 2004): 17176.
115. 115. International Energy Agency, from an R. E. Smalley presentation, ”Nanotechnology, the S&TWorkforce, Energy & Prosperity,” p. 12, presented at PCAST (President's Council of Advisors on Science and Technology), Was.h.i.+ngton, D.C., March 3, 2003, /gst/abstract.html?res=F30C17FC3D5C0C718CDDA00894DB404482.
120. 120. International Energy Agency, from Smalley, ”Nanotechnology, the S&T Workforce, Energy & Prosperity,” p. 12. International Energy Agency, from Smalley, ”Nanotechnology, the S&T Workforce, Energy & Prosperity,” p. 12.
121. 121. American Council for the United Nations University, Millennium Project Global Challenge 13: pany. Disclosure: the author is an adviser to and investor in this company.
124. 124. ”NEC Unveils Methanol-Fueled Laptop,” a.s.sociated Press, June 30, 2003, /mld/siliconvalley/news/6203790.htm. reporting on NEC press release, ”NEC Unveils Notebook PC with Built-In Fuel Cell,” June 30, 2003, /mld/siliconvalley/news/6203790.htm. reporting on NEC press release, ”NEC Unveils Notebook PC with Built-In Fuel Cell,” June 30, 2003, /article/showArticle.jhtml?articleId=22101804, reporting on Tos.h.i.+ba press release, ”Tos.h.i.+ba Announces World's Smallest Direct Methanol Fuel Cell with Energy Output of 100 Milliwats,” /taec/press/dmfc04_222.shtml.
126. 126. Karen Lurie, ”Hydrogen Cars,” Karen Lurie, ”Hydrogen Cars,” ScienceCentral News ScienceCentral News, May 13, 2004, /articles/view.php3?language=english&type=article&article_id=218392247.
127. 127. Louise Knapp, ”Booze to Fuel Gadget Batteries,” Louise Knapp, ”Booze to Fuel Gadget Batteries,” Wired News Wired News, April 2, 2003, /news/gizmos/0,1452,58119,00.html, and St. Louis University press release, ”Powered by Your Liquor Cabinet, New Biofuel Cell Could Replace Rechargeable Batteries,” March 24, 2003, http.///news/2002/021111/full/021111-1.html, reporting on N. Mano, F.Mao, and A. h.e.l.ler, ”A Miniature Biofuel Cell Operating in a Physiological Buffer,” Journal of the American Chemical Society Journal of the American Chemical Society 124 (2002): 1296263. 124 (2002): 1296263.
129. 129. ”Power from Blood Could Lead to 'Human Batteries,' ” ”Power from Blood Could Lead to 'Human Batteries,' ” FairfaxDigital FairfaxDigital, August 4, 2003, .au/articles/2003/08/03/1059849278131.html?oneclick=true. Read more about the microbial fuel cells here: /NMI/6.5.7.htm#p1.
132. 132. This a.s.sumes 10 billion (10 This a.s.sumes 10 billion (1010) persons, a power density for nanorobots of around 107 watts per cubic meter, a nanorobot size of one cubic micron, and a power draw of about 10 picowatts (10 watts per cubic meter, a nanorobot size of one cubic micron, and a power draw of about 10 picowatts (10-11 watts) per nanorobot. The hypsithermal limit of 10 watts) per nanorobot. The hypsithermal limit of 1016 watts implies about 10 kilograms of nanorobots per person, or 10 watts implies about 10 kilograms of nanorobots per person, or 1016 nanorobots per person. Robert A. Freitas Jr., nanorobots per person. Robert A. Freitas Jr., Nanomedicine Nanomedicine, vol. 1, Basic Capabilities Basic Capabilities, section 6.5.7 ”Global Hypsithermal Limit” (Georgetown, Tex.: Landes Bioscience, 1999), pp. 175-76, /NMI/6.5.7.htm#p4.