Part 9 (2/2)
_s.p.a.cing:_ Depends greatly on variety. The root system can occupy as much s.p.a.ce as the vines will cover and then some.
_Irrigation:_ Especially on determinate varieties, periodic fertigation will greatly increase yield and size of fruit. The old indeterminate sprawlers will produce through an entire summer without any supplemental moisture, but yield even more in response to irrigation.
_Variety:_ With or without irrigation or anywhere in between, when growing tomatoes west of the Cascades, nothing is more important than choosing the right variety. Not only does it have to be early and able to set and ripen fruit when nights are cool, but to grow through months without watering the plant must be highly indeterminate. This makes a built-in conflict: most of the sprawly, huge, old heirloom varieties are rather late to mature. But cherry tomatoes are always far earlier than big slicers.
If I had to choose only one variety it would be the old heirloom [Large] Red Cherry. A single plant is capable of covering a 9- to 10-foot-diameter circle if fertigated from mid-July through August.
The enormous yield of a single fertigated vine is overwhelming.
Red Cherry is a little acid and tart. Non-acid, indeterminate cherry types like Sweetie, Sweet 100, and Sweet Millions are also workable but not as aggressive as Red Cherry. I wouldn't depend on most bush cherry tomato varieties. But our earliest cherry variety of all, OSU's Gold Nugget, must grow a lot more root than top, for, with or without supplemental water, Gold Nugget sets heavily and ripens enormously until mid-August, when it peters out from overbearing (not from moisture stress). Gold Nugget quits just about when the later cherry or slicing tomatoes start ripening heavily.
Other well-adapted early determinates such as Oregon Spring and Santiam may disappoint you. Unless fertigated, they'll set and ripen some fruit but may become stunted in midsummer. However, a single indeterminate Fantastic Hybrid will cover a 6-to 7-foot-diameter circle, and grow and ripen tomatoes until frost with only a minimum of water. I think Stupice (ABL, TSC) and Early Cascade are also quite workable (and earlier than Fantastic in Was.h.i.+ngton).
Chapter 6
My Own Garden Plan
This chapter ill.u.s.trates and explains my own dry garden. Any garden plan is a product of compromises and preferences; mine is not intended to become yours. But, all modesty aside, this plan results from 20 continuous years of serious vegetable gardening and some small degree of regional wisdom.
My wife and I are what I dub ”vegetablitarians.” Not vegetarians, or lacto-ovo vegetarians because we're not ideologues and eat meat on rare, usually festive occasions in other peoples' houses. But over 80 percent of our calories are from vegetable, fruit, or cereal sources and the remaining percentage is from fats or dairy foods.
The purpose of my garden is to provide at least half the actual calories we eat year-round; most of the rest comes from home-baked bread made with freshly ground whole grains. I put at least one very large bowl of salad on the table every day, winter and summer. I keep us in potatoes nine months a year and produce a year's supply of onions or leeks. To break the dietary monotony of November to April, I grow as wide an a.s.sortment of winter vegetables as possible and put most produce departments to shame from June through September, when the summer vegies are ”on.”
The garden plan may seem unusually large, but in accordance with Solomon's First Law of Abundance, there's a great deal of intentional waste. My garden produces two to three times the amount of food needed during the year so moochers, poachers, guests, adult daughters accompanied by partners, husbands, and children, mistakes, poor yields, and failures of individual vegetables are inconsequential. Besides, gardening is fun.
My garden is laid out in 125-foot-long rows and one equally long raised bed. Each row grows only one or two types of vegetables. The central focus of my water-wise garden is its irrigation system. Two lines of low-angle sprinklers, only 4 feet apart, straddle an intensively irrigated raised bed running down the center of the garden. The sprinklers I use are Naans, a unique Israeli design that emits very little water and throws at a very low angle (available from TSC and some garden centers). Their maximum reach is about 18 feet; each sprinkler is about 12 feet from its neighbor. On the garden plan, the sprinklers are indicated by a circle surrounding an ”X.” Readers unfamiliar with sprinkler system design are advised to study the irrigation chapter in Growing Vegetables West of the Cascades.
On the far left side of the garden plan is a graphic representation of the uneven application of water put down by this sprinkler system. The 4-foot-wide raised bed gets lots of water, uniformly distributed. Farther away, the amount applied decreases rapidly.
About half as much irrigation lands only 6 feet from the edge of the raised bed as on the bed itself. Beyond that the amount tapers off to insignificance. During summer's heat the farthest 6 feet is barely moistened on top, but no water effectively penetrates the dry surface. Crops are positioned according to their need for or ability to benefit from supplementation. For convenient description I've numbered those rows.
The Raised Bed
Crops demanding the most water are grown on the raised bed. These include a succession of lettuce plantings designed to fill the summer salad bowl, summer spinach, spring kohlrabi, my celery patch, scallions, Chinese cabbages, radishes, and various nursery beds that start overwintered crops for transplanting later. Perhaps the bed seems too large just for salad greens. But one entire meal every day consists largely of fresh, raw, high-protein green leaves; during summer, looseleaf or semiheading lettuce is our salad item of choice. And our individual salad bowls are larger than most families of six might consider adequate to serve all of them together.
If water were severely rationed I could irrigate the raised bed with hose and nozzle and dry garden the rest, but as it is, rows 1, 2, 7, and 8 do get significant but lesser amounts from the sprinklers.
Most of the rows hold a single plant family needing similar fertilization and handling or, for convenience, that are sown at the same time.
Row 1
The row's center is about 3 feet from the edge of the raised bed. In March I sow my very first salad greens down half this row--mostly a.s.sorted leaf lettuce plus some spinach--and six closely s.p.a.ced early Seneca Hybrid zucchini plants. The greens are all cut by mid-June; by mid-July my better-quality Yellow Crookneck squash come on, so I pull the zucchini. Then I till that entire row, refertilize, and sow half to rutabagas. The nursery bed of leek seedlings has gotten large enough to transplant at this time, too.
These go into a trench dug into the other half of the row. The leeks and rutabagas could be reasonably productive located farther from the sprinklers, but no vegetables benefit more from abundant water or are more important to a self-sufficient kitchen. Rutabagas break the winter monotony of potatoes; leeks vitally improve winter salads, and leeky soups are a household staple from November through March.
Row 2: Semi-Drought Tolerant Bra.s.sicas
<script>