Part 3 (2/2)
Plants transpire more moisture when the sun s.h.i.+nes, when temperatures are high, and when the wind blows; it is just like drying laundry. Windbreaks also help the garden grow in winter by increasing temperature. Many other garden books discuss windbreaks, and I conclude that I have a better use for the small amount of words my publisher allows me than to repeat this data; Binda Colebrook's [i]Winter Gardening in the Maritime Northwest[i]
(Sasquatch Books, 1989) is especially good on this topic.
Fertilizing, Fertigating and Foliar Spraying
In our heavily leached region almost no soil is naturally rich, while fertilizers, manures, and potent composts mainly improve the topsoil. But the water-wise gardener must get nutrition down deep, where the soil stays damp through the summer.
If plants with enough remaining elbow room stop growing in summer and begin to appear gnarly, it is just as likely due to lack of nutrition as lack of water. Several things can be done to limit or prevent midsummer stunting. First, before sowing or transplanting large species like tomato, squash or big bra.s.sicas, dig out a small pit about 12 inches deep and below that blend in a handful or two of organic fertilizer. Then fill the hole back in. This double-digging process places concentrated fertility mixed 18 to 24 inches below the seeds or seedlings.
Foliar feeding is another water-wise technique that keeps plants growing through the summer. Soluble nutrients sprayed on plant leaves are rapidly taken into the vascular system. Unfortunately, dilute nutrient solutions that won't burn leaves only provoke a strong growth response for 3 to 5 days. Optimally, foliar nutrition must be applied weekly or even more frequently. To efficiently spray a garden larger than a few hundred square feet, I suggest buying an industrial-grade, 3-gallon backpack sprayer with a side-handle pump.
Approximate cost as of this writing was $80. The store that sells it (probably a farm supply store) will also support you with a complete a.s.sortment of inexpensive nozzles that can vary the rate of emission and the spray pattern. High-quality equipment like this outlasts many, many cheaper and smaller sprayers designed for the consumer market, and replacement parts are also available. Keep in mind that consumer merchandise is designed to be consumed; stuff made for farming is built to last.
Increasing Soil Fertility Saves Water
Does crop growth equal water use? Most people would say this statement seems likely to be true.
Actually, faster-growing crops use much less soil moisture than slower-growing ones. As early as 1882 it was determined that less water is required to produce a pound of plant material when soil is fertilized than when it is not fertilized. One experiment required 1,100 pounds of water to grow 1 pound of dry matter on infertile soil, but only 575 pounds of water to produce a pound of dry matter on rich land. Perhaps the single most important thing a water-wise gardener can do is to increase the fertility of the soil, especially the subsoil.
_Poor plant nutrition increases the water cost of every pound of dry matter produced._
Using foliar fertilizers requires a little caution and forethought.
Spinach, beet, and chard leaves seem particularly sensitive to foliars (and even to organic insecticides) and may be damaged by even half-strength applications. And the cabbage family coats its leaf surfaces with a waxy, moisture-retentive sealant that makes sprays bead up and run off rather than stick and be absorbed. Mixing foliar feed solutions with a little spreader/sticker, Safer's Soap, or, if bugs are also a problem, with a liquid organic insecticide like Red Arrow (a pyrethrum-rotenone mix), eliminates surface tension and allows the fertilizer to have an effect on bra.s.sicas.
Sadly, in terms of nutrient balance, the poorest foliar sprays are organic. That's because it is nearly impossible to get significant quant.i.ties of phosphorus or calcium into solution using any combination of fish emulsion and seaweed or liquid kelp. The most useful possible organic foliar is 1/2 to 1 tablespoon each of fish emulsion and liquid seaweed concentrate per gallon of water.
Foliar spraying and fertigation are two occasions when I am comfortable supplementing my organic fertilizers with water-soluble chemical fertilizers. The best and most expensive brand is Rapid-Gro. Less costly concoctions such as Peters 20-20-20 or the other ”Grows,” don't provide as complete trace mineral support or use as many sources of nutrition. One thing fertilizer makers find expensive to accomplish is concocting a mixture of soluble nutrients that also contains calcium, a vital plant food. If you dissolve calcium nitrate into a solution containing other soluble plant nutrients, many of them will precipitate out because few calcium compounds are soluble. Even Rapid-Gro doesn't attempt to supply calcium. Recently I've discovered better-quality hydroponic nutrient solutions that do use chemicals that provide soluble calcium. These also make excellent foliar sprays. Brands of hydroponic nutrient solutions seem to appear and vanish rapidly. I've had great luck with Dyna-Gro 7-9-5. All these chemicals are mixed at about 1 tablespoon per gallon.
Vegetables That:
Like foliars
Asparagus Carrots Melons Squash Beans Cauliflower Peas Tomatoes Broccoli Brussels sprouts Cuc.u.mbers Cabbage Eggplant Radishes Kale Rutabagas Potatoes
Don't like foliars
Beets Leeks Onions Spinach Chard Lettuce Peppers
Like fertigation
Brussels sprouts Kale Savoy cabbage Cuc.u.mbers Melons Squash Eggplant Peppers Tomatoes
Fertigation every two to four weeks is the best technique for maximizing yield while minimizing water use. I usually make my first fertigation late in June and continue periodically through early September. I use six or seven plastic 5-gallon ”drip system”
buckets, (see below) set one by each plant, and fill them all with a hose each time I work in the garden. Doing 12 or 14 plants each time I'm in the garden, it takes no special effort to rotate through them all more or less every three weeks.
To make a drip bucket, drill a 3/16-inch hole through the side of a 4-to-6-gallon plastic bucket about 1/4-inch up from the bottom, or in the bottom at the edge. The empty bucket is placed so that the fertilized water drains out close to the stem of a plant. It is then filled with liquid fertilizer solution. It takes 5 to 10 minutes for 5 gallons to pa.s.s through a small opening, and because of the slow flow rate, water penetrates deeply into the subsoil without wetting much of the surface. Each fertigation makes the plant grow very rapidly for two to three weeks, more I suspect as a result of improved nutrition than from added moisture. Exactly how and when to fertigate each species is explained in Chapter 5.
<script>