Part 4 (1/2)

Again, a s.h.i.+p of 2,500 at 12 miles, running 6,500 miles could not transport cargo at less than $115; one of 5,000 tons would transport it at $52; one of 10,000 tons would transport it at $33 per ton; and one of 20,000 tons burthen, as for instance the ”Leviathan,” would transport it at $24 per ton. And while none of the three first named sizes of vessels would transport it 12,500 miles, the one of 20,000 tons, running 12 miles per hour, would transport it at $80 per ton; and running 14 miles per hours, at $430 per ton. Two things must, however, not be forgotten in this; that the s.h.i.+p to do this must always run entirely full and have no waste room; and that these prices are comparisons between different steamers, and not with sailing vessels, which, running much more slowly and with but little expense, transport the freight far more cheaply.

The following table will set forth very clearly in a summary view, the Time, Horse-power, Coal, and Cargo for a steamer of good average quality running on pa.s.sages of 1,000 miles, 2,000 miles, and 3,000 miles, and at a speed varying from 6 to 18 miles per hour. It will be observed that a steamer of 3,000 tons can not take power and coal enough to run on a 2,000 miles pa.s.sage above 17 knots per hour, and that one of 3,000 tons also can not run on a 3,000 miles pa.s.sage at a speed above 16 knots per hour. Observe the small quant.i.ty of cargo and the large quant.i.ty of coal for a steamer of 3,000 tons on a 3,000 miles pa.s.sage at 16 miles per hour.

COAL AND CARGO TABLE: No. IV.

_Calculated for the mean Displacement of 3,000 Tons._

KEY: A: SPEED--PER HOUR.

B: HORSE-POWER.

C: WEIGHT OF HULL AND ENGINES.

D: Pa.s.sAGE 1,000 NAUTICAL MILES. Time.

E: Pa.s.sAGE 1,000 NAUTICAL MILES. Coal.

F: Pa.s.sAGE 1,000 NAUTICAL MILES. Cargo.

G: Pa.s.sAGE 2,000 NAUTICAL MILES. Time.

H: Pa.s.sAGE 2,000 NAUTICAL MILES. Coal.

I: Pa.s.sAGE 2,000 NAUTICAL MILES. Cargo.

J: Pa.s.sAGE 3,000 NAUTICAL MILES. Time.

K: Pa.s.sAGE 3,000 NAUTICAL MILES. Coal.

L: Pa.s.sAGE 3,000 NAUTICAL MILES. Cargo.

-----+-----+-----+-----+----+----+-----+----+----+-----+----+---- A | B | C | D | E | F | G | H | I | J | K | L N. M.|H. P.|TONS.|D. H.|TONS|TONS|D. H.|TONS|TONS|D. H.|TONS|TONS -----+-----+-----+-----+----+----+-----+----+----+-----+----+---- 6| 52| 1252| 6.23| 72|1711|13.21| 144|1675|20.20| 216|1639 7| 83| 1283| 5.23| 98|1667|11.22| 197|1617|17.21| 296|1568 8| 123| 1323| 5. 5| 128|1612|10.10| 256|1548|15.15| 384|1484 | | | | | | | | | | | 9| 175| 1375| 4.15| 162|1543| 9. 6| 324|1462|13.21| 486|1381 10| 241| 1441| 4. 4| 200|1458| 8. 8| 401|1358|12.12| 602|1257 11| 320| 1520| 3.19| 242|1358| 7.14| 484|1237|11. 9| 727|1116 | | | | | | | | | | | 12| 416| 1616| 3.11| 288|1239| 6.23| 577|1095|10.10| 866| 950 13| 529| 1729| 3. 5| 339|1100| 6.10| 678| 931| 9.15|1017| 761 14| 661| 1861| 2.23| 393| 942| 5.23| 786| 745| 8.22|1180| 548 | | | | | | | | | | | 15| 813| 2013| 2.19| 451| 761| 5.13| 903| 535| 8. 8|1355| 309 16| 987| 2187| 2.14| 514| 555| 5. 5|1028| 298| 7.19|1542| 41 17| 1183| 2383| 2.11| 580| 327| 4.22|1160| 37| | | | | | | | | | | | | | 18| 1405| 2605| 2. 8| 650| 69| | | | | | 19| 1652| 2852| | | | | | | | | 20| 1927| 3127| | | | | | | | | -----+-----+-----+-----+----+----+-----+----+----+-----+----+----

I will close this long chapter, in which I have endeavored to give a clear, comprehensible, and faithful idea of the cost of running ocean mail, freight, and pa.s.senger steamers, by an extract from that very able and faithful work, ”Steams.h.i.+p Capability.” As a summing up of the various laws and facts concerning the consumption of fuel, weight and power of engines, speed of s.h.i.+ps, and their capacity to do business, Mr. Atherton says, page 55: ”Now suppose, for example, that the pa.s.sage be 1,000 miles, and that, for brevity, we confine our remarks to the engine department only; which, indeed, will be the department of expense, chiefly affected by variations in the rate of speed. It appears that the vessel of 5,000 tons' mean displacement, if fitted to run at the speed of EIGHT NAUTICAL MILES per hour, will require 172 H.P., and a cargo of 2,738 tons will be conveyed 1,000 miles in five days five hours; being equivalent to one day's employment of 33/100 H.P. _per ton_ of goods.

”If fitted to run at TEN NAUTICAL MILES an hour, the vessel will require 336 H.P., the cargo will be reduced to 2,524 tons, and the time to four days four hours; being equivalent to one day's employment of 55/100 H.P. _per ton_ of goods nearly.

”If fitted to run at TWELVE NAUTICAL MILES an hour, the vessel will require 581 H.P., the cargo will be reduced to 2,217 tons, and the time to three days eleven hours; being equivalent to one day's employment of 91/100 H.P. _per ton_ of goods.

”If fitted to run at FOURTEEN MILES an hour, the vessel will require 923 H.P., the cargo will be reduced to 1,802 tons, and the time to two days twenty-three hours; being equivalent to one day's employment of 1-52/100 H.P. _per ton_ of goods.

”If fitted to run at SIXTEEN MILES per hour, the vessel will require 1,377 H.P., the cargo will be reduced to 1,264 tons, and the time to two days fourteen hours; being equivalent to one day's employment of 2-86/100 H.P. _per ton_ of goods.

”If fitted to run at EIGHTEEN MILES per hour, the vessel will require 1,961 H.P., the cargo will be reduced to 585 tons, and the time to two days eight hours; being equivalent to one day's employment of 7-75/100 H.P., _per ton_ of goods.

”And if fitted to run at TWENTY MILES per hour, there will be no displacement available for mercantile cargo.

”a.s.suming, now, that the COST per ton of goods will be in proportion to the amount of power and tonnage employed to do the work, it appears that the cost _per ton of goods_ of performing this pa.s.sage of 1,000 miles, at the respective speeds of 8, 10, 12, 14, 16, and 18 miles, will be proportional to the numbers--33/100, 55/100, 91/100, 1-52/100, 2-86/100, and 7-75/100, which are proportional to the numbers 33, 55, 91, 152, 286, and 775, or nearly as 1, 2, 3, 5, 9, and 23.

”Hence it appears, that in the case of the ONE THOUSAND MILES pa.s.sage above referred to, the cost of freight _per ton of goods_ at TEN MILES per hour, will require to be nearly the _double_ of the rate at EIGHT MILES per hour.

”The cost per ton at TWELVE MILES per hour will require to be _three times_ the rate at EIGHT MILES.

”The cost per ton at FOURTEEN MILES per hour will require to be _five times_ the rate at EIGHT MILES.

”The cost per ton at SIXTEEN MILES per hour will require to be _nine times_ the rate at EIGHT MILES.