Part 20 (2/2)

This is equivalent in round numbers to an average velocity of 100 metres a year. In 1840 M. Aga.s.siz fixed the position of the rock known as the Hotel des Neufchatelois; and on the 5th of September, 1841, he found that it had moved 213 feet downward. Between this date and September, 1842, the rock moved 273 feet, thus accomplis.h.i.+ng a distance of 486 feet in two years.

But much uncertainty prevailed regarding the motion of the boulders, for they sometimes rolled upon the glacier, and hence it was resolved to use stakes of wood driven into the ice. In the month of July, 1841, M.

Escher de la Linth fixed a system of stakes, every two of which were separated from each other by a distance of 100 metres, across the great Aletsch glacier. A considerable number of other stakes were fixed _along_ the glacier, the longitudinal separation being also 100 metres.

On the 8th of July the stakes stood at a depth of about three feet in the ice. On the 16th of August he returned to the glacier. Almost all the stakes had fallen, and no trace, even of the holes in which they had been sunk, remained. M. Aga.s.siz was equally unsuccessful on the glacier of the Aar. It must therefore be borne in mind, that, previous to the introduction of the facile modes of measurement which we now employ, severe labour and frequent disappointment had taught observers the true conditions of success.

After his defeat upon the Aletsch, M. Escher joined MM. Aga.s.siz and Desor on the Aar glacier, where, between the 31st of August and the 5th of September, they fixed in concert the positions of a series of blocks upon the ice, with the view of measuring their displacements the following year.

[Sidenote: AGa.s.sIZ'S MEASUREMENTS.]

Another observation of great importance was also commenced in 1841.

Warned by previous failures, M. Aga.s.siz had iron boring-rods carried up the glacier, with which he pierced the ice at six places to a depth of ten feet, and at each place drove a wooden pile into the ice. These six stations were in the same straight line across the glacier; three of them standing upon the Finsteraar and three on the Lauteraar tributary.

About this time also M. Aga.s.siz conceived the idea of having the displacements measured the year following with precise instruments, and also of having constructed, by a professional engineer, a map of the entire glacier, on which all its visible ”accidents” should be drawn according to scale. This excellent work was afterwards executed by M.

Wild, now Professor of Geodesy and Topography in the Polytechnic School of Zurich, and it is published as a separate atlas in connexion with M.

Aga.s.siz's 'Systeme Glaciaire.'

[Sidenote: PROF. J. D. FORBES INVITED.]

M. Aga.s.siz is a naturalist, and he appears to have devoted but little attention to the study of physics. At all events, the physical portions of his writings appear to me to be very often defective. It was probably his own consciousness of this deficiency that led him to invoke the advice of Arago and others previous to setting out upon his excursions.

It was also his desire ”to see a philosopher so justly celebrated occupy himself with the subject,” which induced him to invite Prof. J. D.

Forbes of Edinburgh to be his guest upon the Aar glacier in 1841. On the 8th of August they met at the Grimsel Hospice, and for three weeks afterwards they were engaged together daily upon the ice, sharing at night the shelter of the same rude roof. It is in reference to this visit that Prof. Forbes writes thus at page 38 of the 'Travels in the Alps':--”Far from being ready to admit, as my sanguine companions wished me to do in 1841, that the theory of glaciers was complete, and the cause of their motion certain, after patiently hearing all they had to say and reserving my opinion, I drew the conclusion that no theory which I had then heard of could account for the few facts admitted on all hands.” In 1842 Prof. Forbes repaired, as early as the state of the snow permitted, to the Mer de Glace; he worked there, in the first instance, for a week, and afterwards crossed over to Courmayeur to witness a solar eclipse. The result of his week's observations was immediately communicated to Prof. Jameson, then editor of the 'Edinburgh New Philosophical Journal.'

[Sidenote: CENTRE MOVES QUICKEST.]

In that letter he announces the fact, but gives no details of the measurement, that ”the central part of the glacier moves faster than the edges in a very considerable proportion; quite contrary to the opinion generally entertained.” He also announced at the same time the continuous hourly advance of the glacier. This letter bears the date, ”Courmayeur, Piedmont, 4th July,” but it was not published until the month of October following.

Meanwhile M. Aga.s.siz, in company with M. Wild, returned to complete his experiment upon the glacier of the Aar. On the 20th of July, 1842, the displacements of the six piles which he had planted the year before were determined by means of a theodolite. Of the three upon the Finsteraar affluent, that nearest the side had moved 160 feet, the next 225 feet, while that nearest to the centre had moved 269 feet. Of those on the Lauteraar, that nearest the side had moved 125 feet, the next 210 feet, and that nearest the centre 246 feet. These observations were perfectly conclusive as to the quicker motion of the centre: they embrace a year's motion; and the magnitude of the displacements, causing errors of inches, which might seriously affect small displacements, to vanish, justifies us in ranking this experiment with the most satisfactory of the kind that have ever been made. The results were communicated to Arago in a letter dated from the glacier of the Aar, on the 1st of August, 1842; they were laid before the Academy of Sciences on the 29th of August, 1842, and are published in the 'Comptes Rendus' of the same date.

The facts, then, so far as I have been able to collect them, are as follows:--M. Aga.s.siz commenced his experiment about ten months before Professor Forbes, and the results of his measurements, with quant.i.ties stated, were communicated to the French Academy about two months prior to the publication of the letter of Professor Forbes in the 'Edinburgh Philosophical Journal.' But the latter communication, announcing in general terms the fact of the speedier central motion, was dated from Courmayeur twenty-seven days before the date of M. Aga.s.siz's letter from the glacier of the Aar.

[Sidenote: STATE OF THE QUESTION.]

The speedier motion of the central portion of a glacier has been justly regarded as one of cardinal importance, and no other observation has been the subject of such frequent reference; but the general impression in England is that M. Aga.s.siz had neither part nor lot in the establishment of the above fact; and in no English work with which I am acquainted can I find any reference to the above measurements. Relying indeed upon such sources for my information, I remained ignorant of the existence of the paper in the 'Comptes Rendus' until my attention was directed to it by Professor Wheatstone. In the next following chapters I shall have to state the results of some of my own measurements, and shall afterwards devote a little time to the consideration of the cause of glacier-motion. In treating a question on which so much has been written, it is of course impossible, as it would be undesirable, to avoid subjecting both my own views and those of others to a critical examination. But in so doing I hope that no expression shall escape me inconsistent with the courtesy which ought to be habitual among philosophers or with the frank recognition of the just claims of my predecessors.

MOTION OF THE MER DE GLACE.

(10.)

[Sidenote: MY FIRST OBSERVATION.]

On Tuesday, the 14th of July, 1857, I made my first observation on the motion of the Mer de Glace. Accompanied by Mr. Hirst I selected on the steep slope of the Glacier des Bois a straight pinnacle of ice, the front edge of which was perfectly vertical. In coincidence with this edge I fixed the vertical fibre of the theodolite, and permitted the instrument to stand for three hours. On looking through it at the end of this interval, the cross hairs were found projected against the white side of the pyramid; the whole ma.s.s having moved several inches downwards.

The instrument here mentioned, which had long been in use among engineers and surveyors, was first applied to measure glacier-motion in 1842; by Prof. Forbes on the Mer de Glace, and by M. Aga.s.siz on the glacier of the Aar. The portion of the theodolite made use of is easily understood. The instrument is furnished with a telescope capable of turning up and down upon a pivot, without the slightest deviation right or left; and also capable of turning right or left without the slightest deviation up or down. Within the telescope two pieces of spider's thread, so fine as to be scarcely visible to the naked eye, are drawn across the tube and across each other. When we look through the telescope we see these fibres, their point of intersection being exactly in the centre of the tube; and the instrument is furnished with screws by means of which this point can be fixed upon any desired object with the utmost precision.

<script>