Part 26 (2/2)

Thymus serpyllum.

The hermaphrodite plants present nothing particular in the state of their reproductive organs; and so it is in all the following cases. The females of the present species produce rather fewer flowers and have somewhat smaller corollas than the hermaphrodites; so that near Torquay, where this plant abounds, I could, after a little practice, distinguish the two forms whilst walking quickly past them. According to Vaucher, the smaller size of the corolla is common to the females of most or all of the above-mentioned l.a.b.i.atae. The pistil of the female, though somewhat variable in length, is generally shorter, with the margins of the stigma broader and formed of more lax tissue, than that of the hermaphrodite. The stamens in the female vary excessively in length; they are generally enclosed within the tube of the corolla, and their anthers do not contain any sound pollen; but after long search I found a single plant with the stamens moderately exserted, and their anthers contained a very few full-sized grains, together with a mult.i.tude of minute empty ones. In some females the stamens are extremely short, and their minute anthers, though divided into the two normal cells or loculi, contained not a trace of pollen: in others again the anthers did not exceed in diameter the filaments which supported them, and were not divided into two loculi. Judging from what I have myself seen and from the descriptions of others, all the plants in Britain, Germany, and near Mentone, are in the state just described; and I have never found a single flower with an aborted pistil. It is, therefore, remarkable that, according to Delpino, this plant near Florence is generally trimorphic, consisting of males with aborted pistils, females with aborted stamens, and hermaphrodites. (7/15. 'Sull' Opera, la Distribuzione dei Sessi nelle Piante, etc' 1867 page 7. With respect to Germany H. Muller 'Die Befruchtung etc.' page 327.)

I found it very difficult to judge of the proportional number of the two forms at Torquay. They often grow mingled together, but with large patches consisting of one form alone. At first I thought that the two were nearly equal in number; but on examining every plant which grew close to the edge of a little overhanging dry cliff, about 200 yards in length, I found only 12 females; all the rest, some hundreds in number, being hermaphrodites. Again, on an extensive gently sloping bank, which was so thickly covered with this plant that, viewed from the distance of half a mile it appeared of a pink colour, I could not discover a single female. Therefore the hermaphrodites must greatly exceed in number the females, at least in the localities examined by me. A very dry station apparently favours the presence of the female form. With some of the other above-named l.a.b.i.atae the nature of the soil or climate likewise seems to determine the presence of one or both forms; thus with Nepeta glechoma, Mr. Hart found in 1873 that all the plants which he examined near Kilkenny in Ireland were females; whilst all near Bath were hermaphrodites, and near Hertford both forms were present, but with a preponderance of hermaphrodites. (7/16. 'Nature'

June 1873 page 162.) It would, however, be a mistake to suppose that the nature of the conditions determines the form independently of inheritance; for I sowed in the same small bed seeds of T. serpyllum, gathered at Torquay from the female alone, and these produced an abundance of both forms. There is every reason to believe, from large patches consisting of the same form, that the same individual plant, however much it may spread, always retains the same form. In two distant gardens I found ma.s.ses of the lemon-thyme (T. citriodorus, a var. of T. serpyllum, which I was informed had grown there during many years, and every flower was female.

With respect to the fertility of the two forms, I marked at Torquay a large hermaphrodite and a large female plant of nearly equal sizes, and when the seeds were ripe I gathered all the heads. The two heaps were of very nearly equal bulk; but the heads from the female plant numbered 160, and their seeds weighed 8.7 grains; whilst those from the hermaphrodite plant numbered 200, and their seeds weighed only 4.9 grains; so that the seeds from the female plant were to those from the hermaphrodite as 100 to 56 in weight. If the relative weight of the seeds from an equal number of flower-heads from the two forms be compared, the ratio is as 100 for the female to 45 for the hermaphrodite form.

Thymus vulgaris.

(FIGURE 7.15. Thymus vulgaris (magnified).

Left: Hermaphrodite.

Right: Two females.)

The common garden thyme resembles in almost every respect T. serpyllum. The same slight differences between the stigmas of the two forms could be perceived. In the females the stamens are not generally quite so much reduced as in the same form of T. serpyllum. In some specimens sent me from Mentone by Mr. Moggridge, together with the sketches in Figure 7.15, the anthers of the female, though small, were well formed, but they contained very little pollen, and not a single sound grain could be detected. Eighteen seedlings were raised from purchased seed, sown in the same small bed; and these consisted of seven hermaphrodites and eleven females. They were left freely exposed to the visits of bees, and no doubt every female flower was fertilised; for on placing under the microscope a large number of stigmas from female plants, not one could be found to which pollen-grains of thyme did not adhere. The seeds were carefully collected from the eleven female plants, and they weighed 98.7 grains; and those from the seven hermaphrodites 36.5 grains. This gives for an equal number of plants the ratio of 100 to 58; and we here see, as in the last case, how much more fertile the females are than the hermaphrodites. These two lots of seeds were sown separately in two adjoining beds, and the seedlings from both the hermaphrodite and female parent-plants consisted of both forms.

Satureia hortensis.

Eleven seedlings were raised in separate pots in a hotbed and afterwards kept in the greenhouse. They consisted of ten females and of a single hermaphrodite.

Whether or not the conditions to which they had been subjected caused the great excess of females I do not know. In the females the pistil is rather longer than that of the hermaphrodite, and the stamens are mere rudiments, with minute colourless anthers dest.i.tute of pollen. The windows of the greenhouse were left open, and the flowers were incessantly visited by humble and hive bees. Although the ten females did not produce a single grain of pollen, yet they were all thoroughly well fertilised by the one hermaphrodite plant, and this is an interesting fact. It should be added that no other plant of this species grew in my garden. The seeds were collected from the finest female plant, and they weighed 78 grains; whilst those from the hermaphrodite, which was a rather larger plant than the female, weighed only 33.2 grains; that is, in the ratio of 100 to 43. The female form, therefore, is very much more fertile than the hermaphrodite, as in the two last cases; but the hermaphrodite was necessarily self-fertilised, and this probably diminished its fertility.

We may now consider the probable means by which so many of the l.a.b.i.atae have been separated into two forms, and the advantages thus gained. H. Muller supposes that originally some individuals varied so as to produce more conspicuous flowers; and that insects habitually visited these first, and then dusted with their pollen visited and fertilised the less conspicuous flowers.

(7/17. 'Die Befruchtung der Blumen' pages 319, 326.) The production of pollen by the latter plants would thus be rendered superfluous, and it would be advantageous to the species that their stamens should abort, so as to save useless expenditure. They would thus be converted into females. But another view may be suggested: as the production of a large supply of seeds evidently is of high importance to many plants, and as we have seen in the three foregoing cases that the females produce many more seeds than the hermaphrodites, increased fertility seems to me the more probable cause of the formation and separation of the two forms. From the data above given it follows that ten plants of Thymus serpyllum, if half consisted of hermaphrodites and half of females, would yield seeds compared with ten hermaphrodite plants in the ratio of 100 to 72. Under similar circ.u.mstances the ratio with Satureia hortensis (subject to the doubt from the self-fertilisation of the hermaphrodite) would be as 100 to 60. Whether the two forms originated in certain individuals varying and producing more seed than usual, and consequently producing less pollen; or in the stamens of certain individuals tending from some unknown cause to abort, and consequently producing more seed, it is impossible to decide; but in either case, if the tendency to the increased production of seed were steadily favoured, the result would be the complete abortion of the male organs. I shall presently discuss the cause of the smaller size of the female corolla.

[Scabiosa arvensis (DIPSACEAE).

It has been shown by H. Muller that this species exists in Germany under an hermaphrodite and female form. (7/18. 'Die Befruchtung der Blumen' page 368. The two forms occur not only in Germany, but in England and France. Lecoq 'Geographie Bot.' 1857 tome 6 pages 473, 477, says that male plants as well as hermaphrodites and females coexist; it is, however, possible that he may have been deceived by the flowers being so strongly proterandrous. From what Lecoq says, S. succisa likewise appears to occur under two forms in France.) In my neighbourhood (Kent) the female plants do not nearly equal in number the hermaphrodites. The stamens of the females vary much in their degree of abortion; in some plants they are quite short and produce no pollen; in others they reach to the mouth of the corolla, but their anthers are not half the proper size, never dehisce, and contain but few pollen-grains, these being colourless and of small diameter. The hermaphrodite flowers are strongly proterandrous, and H. Muller shows that, whilst all the stigmas on the same flower-head are mature at nearly the same time, the stamens dehisce one after the other; so that there is a great excess of pollen, which serves to fertilise the female plants. As the production of pollen by one set of plants is thus rendered superfluous, their male organs have become more or less completely aborted. Should it be hereafter proved that the female plants yield, as is probable, more seeds than the hermaphrodites, I should be inclined to extend the same view to this plant as to the l.a.b.i.atae. I have also observed the existence of two forms in our endemic S. succisa, and in the exotic S. atro-purpurea. In the latter plant, differently to what occurs in S. arvensis, the female flowers, especially the larger circ.u.mferential ones, are smaller than those of the hermaphrodite form. According to Lecoq, the female flower-heads of S. succisa are likewise smaller than those of what he calls the male plants, but which are probably hermaphrodites.

Echium vulgare (BORAGINEAE).

The ordinary hermaphrodite form appears to be proterandrous, and nothing more need be said about it. The female differs in having a much smaller corolla and shorter pistil, but a well-developed stigma. The stamens are short; the anthers do not contain any sound pollen-grains, but in their place yellow incoherent cells which do not swell in water. Some plants were in an intermediate condition; that is, had one or two or three stamens of proper length with perfect anthers, the other stamens being rudimentary. In one such plant half of one anther contained green perfect pollen-grains, and the other half yellowish- green imperfect grains. Both forms produced seed, but I neglected to observe whether in equal numbers. As I thought that the state of the anthers might be due to some fungoid growth, I examined them both in the bud and mature state, but could find no trace of mycelium. In 1862 many female plants were found; and in 1864, 32 plants were collected in two localities, exactly half of which were hermaphrodites, fourteen were females, and two in an intermediate condition. In 1866, 15 plants were collected in another locality, and these consisted of four hermaphrodites and eleven females. I may add that this season was a wet one, which shows that the abortion of the stamens can hardly be due to the dryness of the sites where the plants grew, as I at one time thought probable. Seeds from an hermaphrodite were sown in my garden, and of the 23 seedlings raised, one belonged to the intermediate form, all the others being hermaphrodites, though two or three of them had unusually short stamens. I have consulted several botanical works, but have found no record of this plant varying in the manner here described.

Plantago lanceolata (PLANTAGINEAE).

Delpino states that this plant presents in Italy three forms, which graduate from an anemophilous into an entomophilous condition. According to H. Muller, there are only two forms in Germany, neither of which show any special adaptation for insect fertilisation, and both appear to be hermaphrodites.

(7/19. 'Die Befruchtung' etc. page 342.) But I have found in two localities in England female and hermaphrodite forms existing together; and the same fact has been noticed by others. (7/20. Mr. C.W. Crocker 'The Gardener's Chronicle' 1864 page 294. Mr. W. Marshall writes to me to the same effect from Ely.) The females are less frequent than the hermaphrodites; their stamens are short, and their anthers, which are of a brighter green whilst young than those of the other form, dehisce properly, yet contain either no pollen, or a small amount of imperfect grains of variable size. All the flower-heads on a plant belong to the same form. It is well known that this species is strongly proterogynous, and I found that the protruding stigmas of both the hermaphrodite and female flowers were penetrated by pollen-tubes, whilst their own anthers were immature and had not escaped out of the bud. Plantago media does not present two forms; but it appears from Asa Gray's description, that such is the case with four of the North American species. (7/21. 'Manual of the Botany of the Northern United States' 2nd edition 1856 page 269. See also 'American Journal of Science'

November 1862 page 419 and 'Proceedings of the American Academy of Science'

October 14, 1862 page 53.) The corolla does not properly expand in the short- stamened form of these plants.

Cnicus, Serratula, Eriophorum.

In the Compositae, Cnicus pal.u.s.tris and acaulis are said by Sir J.E. Smith to exist as hermaphrodites and females, the former being the more frequent. With Serratula tinctoria a regular gradation may be followed from the hermaphrodite to the female form; in one of the latter plants the stamens were so tall that the anthers embraced the style as in the hermaphrodites, but they contained only a few grains of pollen, and these in an aborted condition; in another female, on the other hand, the anthers were much more reduced in size than is usual.

Lastly, Dr. d.i.c.kie has shown that with Eriophorum angustifolium (Cyperaceae) hermaphrodite and female forms exist in Scotland and the Arctic regions, both of which yield seed. (7/22. Sir J.E. Smith 'Transactions of the Linnean Society'

volume 13 page 599. Dr. d.i.c.kie 'Journal of the Linnean Society Botany' volume 9 1865 page 161.)]

It is a curious fact that in all the foregoing polygamous, dioecious, and gyno- dioecious plants in which any difference has been observed in the size of the corolla in the two or three forms, it is rather larger in the females, which have their stamens more or less or quite rudimentary, than in the hermaphrodites or males. This holds good with Euonymus, Rhamnus catharticus, Ilex, Fragaria, all or at least most of the before-named l.a.b.i.atae, Scabiosa atro-purpurea, and Echium vulgare. So it is, according to Von Mohl, with Cardamine amara, Geranium sylvatic.u.m, Myosotis, and Salvia. On the other hand, as Von Mohl remarks, when a plant produces hermaphrodite flowers and others which are males owing to the more or less complete abortion of the female organs, the corollas of the males are not at all increased in size, or only exceptionally and in a slight degree, as in Acer. (7/23. 'Botanische Zeitung' 1863 page 326.) It seems therefore probable that the decreased size of the female corollas in the foregoing cases is due to a tendency to abortion spreading from the stamens to the petals. We see how intimately these organs are related in double flowers, in which the stamens are readily converted into petals. Indeed some botanists believe that petals do not consist of leaves directly metamorphosed, but of metamorphosed stamens. That the lessened size of the corolla in the above case is in some manner an indirect result of the modification of the reproductive organs is supported by the fact that in Rhamnus catharticus not only the petals but the green and inconspicuous sepals of the female have been reduced in size; and in the strawberry the flowers are largest in the males, mid-sized in the hermaphrodites, and smallest in the females. These latter cases,--the variability in the size of the corolla in some of the above species, for instance in the common thyme,--together with the fact that it never differs greatly in size in the two forms--make me doubt much whether natural selection has come into play;--that is whether, in accordance with H. Muller's belief, the advantage derived from the polleniferous flowers being visited first by insects has been sufficient to lead to a gradual reduction of the corolla of the female.

<script>