Chapter 441 (1/2)

Chapter 444

about the proof method of ”there are infinitely many primes”, the most recognized one is the proof process listed in the 20th proposition of volume 9 of the original geometry by the mathematician euridge.

Therefore, this proposition is also called Euclidean theorem.

Origi De's proof is very simple and ordinary, so he can enter the elementary mathematics class.

He first assumes that prime numbers are finite, that there are only a finite number of primes, and that the largest prime is p.

Then let Q be the product of all primes plus 1, then q = (2 × 3 × 5 ×...) X P) + 1 is not a prime, then q can be 2, 3 Divide the number in P.

And Q is affected by these 2,3 Any integral division of P will result in 1. So, primes are infinite.

This ancient and simple proof method, even after more than 2000 years, can not deny its powerful.

…………

”I think since it's a comparison of quantity, we'd better make a variation on the basis of eurygiede's proof, so that the waste of time is estimated to be a little less.”

”Well, I think so. After all, we only have half an hour. At least each of the three of us has to come up with a variant to win.”

”No, no, no, three are not enough, and other schools are not all incompetent. I think if we want to compete for the top three, at least five are more secure! We'll spend at most 20 minutes each to come up with a variant, and then the three of us will work together for the last ten minutes to see if there are any other ideas

”Well, that's it.”

The two teammates were in a heated discussion. After reaching an agreement, they all turned to look at Cheng Nuo.

”Cheng Nuo, are you ok?” Although time is tight, they still want to ask Cheng Nuo's opinion.

”Er There is a saying that I don't know when to say it or not. ” Cheng Nuo scratched his head.

Two people a Leng, return way, ”but say no harm.”

”Why do we have to think about variants of eurekit's proof, instead of looking for new directions to prove it?” Cheng Nuo asked.

Cheng Nuo's words made them speechless.

They did not want to find another new direction to prove the proposition of infinite prime number.

But it's a competition, not a research.

The standard of measurement is quantity, not quality.

It is just like standing on the shoulders of giants to carry out the variation on the basis of Euclid's proof method, which will greatly reduce the difficulty and time of research.

Looking for another direction of proof is easy to say, but it is a process from scratch, which is extremely difficult. And the possibility of failure is very high.

They didn't have the courage and confidence to try to be the pioneers.