Part 8 (2/2)

By Mr. H. Sprenger, a.s.sistant Engineer_

”The boxes in which the pise-work at the Etah Jail is being executed consist of two wooden frames 10 ft. long and 2 ft. broad, made of planks, which are nailed on to stout battens. They are held together by four pairs of posts 3 in. by 3 in., which are connected above and below with tie-bars of flat iron 1 in. by in. The tie-bars have at each end a certain number of in. holes punched in them to receive pins for the purpose of preventing the posts from slipping off. By changing the pins, walls of any given dimension can be obtained, wedges of hard wood, with longitudinal slots, are introduced between the posts and the pins, to adjust the breadth of the boxes to a standard gauge. After the boxes are fixed and adjusted, they are secured in their position by ropes pa.s.sing over them, and tied to stakes on each side. Any deflection from the vertical should be corrected at the commencement of the work, as it is impossible to alter the position of a box after it is half full. Any earth which is suitable for brick-making will do for pise-work. On being dug out it is pa.s.sed through a screen with -in. meshes, and thrown into the boxes in even layers of 6 in. in depth.

[Headnote: The Right Quant.i.ty of Water]

”Generally fresh earth contains sufficient moisture to ensure good consolidation; but if it is found that it jumps up under the rammers, it should, on being thrown into the boxes, be sprinkled with a little water out of a tin can with a rose. The watering should be as uniform as possible, as if it is applied unequally it will liquefy the earth, which will commence oozing out under the rammers. Pise-work executed with too much water is worse than if done with dry earth, as, on account of the elasticity of the wet earth, the effect of the ramming is deadened, and the earth remains unconsolidated. The men should be prohibited to keep time in ramming, as it causes vibration, which is injurious to the stability of the wall. On working over a lower course, it is as well to let the lower tie-bars about 4 in. into the same to give the boxes a firm hold on the old work, thereby the joints become imperceptible, and the upper edge of the lower course is prevented from chipping off.

”The implements used are three different kinds of rammers. The earth is first beaten down with a V-shaped rammer, and then surfaced with one with a flat bottom. The sides of the boxes are consolidated with a spade-shaped rammer. When commencing the pise-work at Etah, considerable difficulty was experienced in extricating the lower tie-bars. These were, therefore, supplied with holes 3 in. apart throughout their whole length. A pin was inserted, against which a crow-bar with a long slot and well bent at the end was made to work. An equal pressure could thereby be exerted against the tie-bars; they were thus extracted with great facility without injuring them or the face of the wall, which was not the case formerly.”

_Supplementary Note by Mr. E. Battie, Executive Engineer, 5th Division, Grand Trunk Road_

”The work at Etah has generally been concluded in the following manner: In the morning the boxes were taken down, and again put up and filled during the day; they were left during the night, so that the earth might detach itself from the sides. It is not advisable to allow a course to dry thoroughly, as the upper one will not bind well into it, but probably show a crack. If the earth is well rammed, and only the proper quant.i.ty of moisture admitted, a second course can be commenced immediately.”

The Report of the Rhodesia Munitions and Resources Committee issued in 1918 contains an interesting paper by Mr. John Hynd on Pise-building, from which the following is extracted:

[Headnote: Pise Buildings at Empandeni]

”_Pise de Terre Buildings_

”_The Spectator_ took this matter up some two years ago and wrote as follows:

”'Various schemes of land settlement are in the air... . All of them must, however, be concerned with cheap buildings. That is a _sine qua non_.' ...

”The material used for the walls at Empandeni is one-third sand, one-third ant-heap, and one-third soil, all pulverised and put through a sieve. Water is then added. The mixture must be neither too wet nor too dry, just sufficiently damp to bind; a good indication of the correct consistency being that when squeezed hard by the hand it shows a tendency to bind. Sufficient of the loose mixture is thrown into the form to fill it to a depth of about 3 in., and this is thoroughly rammed before the next layer is put in. Most thorough ramming is essential.

When the frame is rammed full, it is taken apart and s.h.i.+fted along to make another section and so on until the first layer is complete. The first layer is, as a rule, sufficiently dry to permit the starting of the next about three hours after laying. Door and window frames are put in as the work proceeds, and must be well braced while ramming. In the top layer hoop iron or fencing wire is let in for fastening down the wall plates. a.r.s.enite of soda or Atlas Compound is used in the first layer or two to keep out white ants. The floor can be made of timber, cement concrete, or rammed earth, and the roof thatched or covered with corrugated iron as is most convenient.

”The following Pise de terre buildings have been erected at Empandeni:

”A large schoolroom 75 ft. by 28 ft. by 12 ft. high, walls 14 in. thick; seven boys' dormitories, each 30 ft. by 20 ft. by 12 ft.; twelve single-room houses, each 16 ft. by 12 ft.; six fowl houses, each 20 ft.

by 10 ft.; a large fowl house 250 ft. long, front walls 7 ft. and back walls 5 ft. high. This building is divided into fifteen compartments.

”From the foregoing description it is quite evident that cheap and efficient buildings of this nature can be erected at a very low cost.

”On a farm it is not necessary to employ any skilled labour, as the doors and windows can be purchased ready-made, and the frame-work, clamps, etc., put together by the farmer himself. For a roof of thatch all the necessary material, except iron ridging, if this is used, can as a rule be procured on the farm.

”Should a cement concrete floor, which is cheaper than a wood one, be desired, there would be an extra expenditure for cement, the amount required being about two bags per twelve square yards. Such a floor should be laid before the walls of the building are commenced, and it is essential that the site is thoroughly well rammed and consolidated, particularly below where walls will come, before laying the concrete, to prevent cracks developing through settlement. The concrete raft should be carried at least 6 in. beyond the outside walls of the building, and if the work is properly done, a special ant-course will be unnecessary.

The concrete can be left rough below the walls to give a bond, and it might be advisable to lay some pieces of hoop iron in it which would be left projecting to be bedded into the walls.

”Another good type of floor would probably be that suggested in _The Spectator_, viz. road material laid down and tarred in the same manner as roads are now made in many places.

”A number of rooms and houses have been erected on the Globe and Phnix Mine on much the same principle as Pise de terre buildings, but the system developed there is different as regards the mixture, which consists of two parts ant-heap or ordinary dagga which must not be too sandy, and three parts ashes or clinker sieved free from fine dust.

”A very full description of the method employed on this mine was forwarded by the courtesy of the Manager to the Committee, and it is interesting to note from this that the walls are made waterproof by first making them smooth with dagga plaster, then, when quite dry, giving one good coat of boiling hot tar. A coat of limewash is applied three days later. That this is effective is well evidenced by the fact that the buildings erected have successfully withstood our last abnormally heavy rainy season.

<script>