Part 22 (1/2)

”Experience never gives us an example of an isolated system; on the contrary, every system is a part of higher systems. The inner relations of its stability are not conditioned by its own parts only, but also, more or less, by those of other systems, so that the destruction of one part-system is always only in the direction towards the stability of a higher, ultimately of the highest, system; that is, of the system of the universe.”

”Thus the teleological principle coincides with the principle of the Tendency to Stability, and at the same time the latter const.i.tutes the link between the former and the law of Causality. Though, in truth, this manner of looking at the matter signifies a generalization of the concept of 'end,' since it defines _all_ stable conditions as ends. The view is justified, however, by the fact that the greatest possible physical satisfaction--for us, the criterion of teleology--is always bound up with the longest possible preservation or slow change of a stable organic condition. The _physical_ Tendency to Stability 'bears with it a _psychical_ tendency to the attainment and conservation of just those conditions' towards which the physical tendency is directed.”

Of the fact that Lange ”feels the lack of the proof of this 'Tendency to Stability,'” Dr. Petzoldt says: ”But how is there a need of proof here?

To prove is to refer back to known facts. But what is there in Fechner's remarks that stands in need of such a reference? They simply draw our attention to the result of evolution as a state which bears, in itself, the guarantee of some continuance. Can any one contest this? Is there anything further to prove? It is said that Gauss once remarked that Lagrange's equations of motion are not proved, but only historically stated. The case is exactly the same here. The fact is attested, merely, that evolution ends in a stable condition; and herein lies the pith and the great merit of the theory of the Tendency to Stability.”

Dr. Petzoldt criticises, among other things, especially Fechner's concept of approximate stability, in that no distinction is made by the author between three different cases. The first case comprises forms of motion in which periodicity is only approximate, but in which, nevertheless, no retrogression in stability takes place; this case is ill.u.s.trated by our solar system. The second case comprises forms of motion in which the stability increases up to a certain point, but beyond this, despite relative constancy in outer conditions, decreases again until complete destruction of the system supervenes; an ill.u.s.tration of this form of motion is found in all organisms. The third case comprises forms of motion which we cannot concede to be stable. ”For, if we ascribe periodic motion to pendula and musical strings which vibrate in a resisting medium, this is nevertheless a periodicity, which continually changes _in the same sense_, and we certainly cannot say that pendula and strings approach, in a resisting medium, a condition of absolute, through a condition of approximate, stability. We recognize in these vibrations, decreasing in amplitude, merely unstable changes which tend toward a final stable condition,--namely that of rest.”

The author finds a further ground of criticism in Fechner's a.s.sertion that organisms are entirely dependent upon the periodicity of their functions. Only a part of such functions are periodic. Periodicity is not conceivable without stability, but stability is conceivable without periodicity.

In the process of evolution towards a stable form of movement, Dr. Petzoldt recognizes briefly two factors, ”Tendency and Compet.i.tion.”[102] Tendency is defined, in general, as the direction, actual or potential, of material parts or of mental or physical function; compet.i.tion, as the conflict of tendencies, from which a tendency of a higher order results. ”The concept of Compet.i.tion is, like that of Tendency, to be taken in a general significance. A number of forces which act upon a single point compete. Different mental images, observations, concepts, laws, come into compet.i.tion, from which result concepts and laws of lower and higher orders. The struggle for existence is only a special case of compet.i.tion. Though this often ends with the immediate or gradual destruction of systems entering upon it, nevertheless only a middle worth between all the competing tendencies can be ascribed to the resultant. Even the conqueror is, after the struggle, other than what he was before it; a part of the tendency destroyed by him lives on in him, has combined with his original tendency to a resultant. Tendencies can as little disappear without compensation as can forces, whether the compensation consists in a strengthening or in a weakening of others, and the _conservation of competing tendencies_ might be regarded as a further qualitative addition to the law of the conservation of force. Hence, in the examination of the effects of the struggle for existence, the like claim of all tendencies taking part in it is not to be left out of consideration. Each makes its full force felt. But not all attain to compet.i.tion; of the numerous tendencies bound up in one organism, only a few unite, in the single case, to a resultant, which has a direction towards a definite issue.” The less the opposition of competing tendencies of concepts or laws, the less the deviation of the resultant from its components, and the less the change these have to undergo. The higher concepts and laws are, the less are the number of distinguis.h.i.+ng marks which they take from all single conceptions; for they are the resultants of very strongly opposed components.[103]

Fechner's views are related to, and, to some extent, dependent upon, certain ones of Zollner adduced in connection with a consideration of sun-spots.[104] Du Prel, who also acknowledges special indebtedness to Zollner, attempted in his ”Struggle for Existence in the Heavens” (”Der Kampf ums Dasein am Himmel”) to demonstrate the fact of a struggle and selection among the heavenly bodies a.n.a.logous to that claimed for life upon the earth. The t.i.tle of the book was afterwards changed to ”The History of the Evolution of the Universe,”[105] its scope having ”grown far beyond the limit of the former t.i.tle.” Du Prel finds one of the chief advantages of an application of Darwinian ideas to astronomy in the fact that, unlike our earth, the heavens in their immensity afford us existing, or to our eye existing, examples of the various stages of their evolution, in nebular mist, comets, suns, fixed stars, planets, rings, and moons,--all subject to processes of development, which we may to some extent observe. In the first chapter of this book, Du Prel says: ”The existing condition of the Cosmos with respect to all forms of the Purposeful[106]--whether we regard the realm of the organic or the inorganic--can be looked upon only as an attained, moving equilibrium of forces. Immanent in Nature lies the capacity to develop from chaotic conditions to teleologic forms; for, in the ceaseless play of forces, all other than such combinations are by their nature given over to destruction, while it lies, on the contrary, in the essence of all purposeful combinations to be preserved. In every system of mechanical forces an adjustment of the same must finally be arrived at through the removal of all immanent oppositions.” ”_It is impossible_ for nature to remain in chaotic conditions.” ”Every system of forces tends to a state of equilibrium. This is as true of the conflict of images in a human brain, from whose mutual accommodation the resultant of a unified theory of the universe arises, as of oppositions in the social organism, of the conditions of power and civilization of neighboring peoples, of the meteorologic states of the earth, of the mechanical forces of a solar system, or the atoms of a cosmic mist. Every war of the elements ends with an adjustment of ideal justice, for every 'moment' of force has influence proportioned to its power and the duration of its activity.”[107]

There is one portion of Fechner's theory as above stated (its metaphysical phases being beyond the scope of the present chapter have not been touched upon) that raises a question which may perhaps appear to have in itself no special significance, but which nevertheless opens up, by its implications, new fields of inquiry, and may possibly lead to further theory. The condition of stability which evolution in the universe as a whole gradually approaches but can never attain to in finite time is declared, namely, to be one not of rest, but of motion. A question might be raised, here, as to the definition of the ”infinite time” a.s.serted to be necessary to the attainment of such full stability,--whether the phrase be used in the mathematical or the philosophic sense; and the question would be found, I believe, to involve the unanswerable problem of the finite or infinite character of the universe in s.p.a.ce. Of a universe conceived under the philosophic concept of spatial infinitude, obviously no final state as the result of evolution can be predicated, the evolution supposing a progress which, as involving infinite matter, cannot be accomplished in finite time. If we, however, conceive the universe as occupying finite s.p.a.ce and undergoing continual evolution as a whole in the direction of equilibrium, it is a question whether the end must not be attained in finite time. For a universe conceived as finite, however immense, there must be a finite number, however great, representing the changes necessary to the attainment of final equilibrium; and if progress in the direction of such equilibrium is of necessity continual, the final equilibrium must be attainable in finite time. The question of the nature of such a state of final, universal stability is bound up with the problem of motion through a perfect void, and of the possibility of the formation of such a void through the concentration of matter.

Leaving out of consideration the problem in its metaphysical form, which concerns the possibility of conceiving inter-material s.p.a.ce, it may be said that it is not now supposed that the heavenly bodies move through an absolute void; and the existence of any medium opposing resistance, however slight, is a condition rendering impossible the attainment of absolute stability of motion or a full stability which suffers no diminution and is, therefore, in effect, an absolute stability. It may be questioned whether the very nature of motion is not coincident with change, and this with action and reaction, or compet.i.tion. Such a view would reduce evolution to a single ultimate principle, in place of Darwin's Variation and Selection through struggle, or Petzoldt's Tendency and Compet.i.tion. We should have left, instead of these, only the final principle involved in moving matter considered in its ultimate parts. The metaphysical problem of the infinite divisibility of matter need not here concern us; the ultimate parts of an organism could not be, however, its organs as Lewes defined them, but rather, from a positive standpoint, the ultimate units recognized by science in cell and cell-parts. We may, indeed, since we know no beginning of motion, legitimately regard all tendency as itself resultant. Just as we cannot separate matter and motion, except by abstraction from reality, so, too, we cannot conceive of motion except as having definite direction; and thus we arrive, by a final a.n.a.lysis, at the ultimate philosophic principles of matter and its motion. I use these terms in no metaphysical sense, but merely as generic terms including under one head specific forms of material combination and the specific forms of motion of their wholes or parts.

The question of the character of a conceived state of final equilibrium may be approached from a somewhat different side, though the emphasis falls, as before, on the solidarity of the universe and the nature of motion as change. We may, for instance, regard the earth as an isolated system whose isolation makes possible the continual progress of the evolution taking place on its surface. But this whole evolution is, on the other hand, dependent upon the light and heat of the sun. Again, the sun is undergoing an evolution whose continuous progress may be regarded as in a certain sense dependent upon isolation; but we see, on reflection, that this very process is the result of the cooling nature of the sun's surroundings, and that it is sending its motion in every direction through s.p.a.ce. The moon, which has pa.s.sed through both the evolution that the sun is undergoing and that which is in progress upon the earth, is now pa.s.sing through another stage which the earth must reach in time by diffusion of its atmosphere, in case its destruction is not accomplished by some catastrophic event before the arrival of that distant period. Suns and planets, all the heavenly bodies, are sending their influence in every direction through the unfathomable depths of s.p.a.ce; and just as the capacity of the earth to be warmed by the influence of the sun involves its reciprocal capacity to act as a cooling medium for that body, so the conditions throughout the universe must be regarded as everywhere interdependent and mutually implying one another. Thus we again arrive finally at a universal action and reaction among the parts of the universe, all motion implying change of the direction of motion. Or, since we may and are, in fact, obliged to regard every direction or form of motion as a resultant,--for of motion as of matter we know no absolute beginning,--even this simple a.s.sumption may supply us with the conclusion which we have reached in a more roundabout way. We may regard motion in any direction as counterbalanced by a resistance in every other direction sufficient to produce it in this one; in other words, motion takes place at every instant, in the direction of least resistance, even though this direction may represent, in the next instant, through the action of new ”moments” of force, the greatest resistance. Any direction as well as any change of direction implies, then, resistance; resistance is equivalent to the interference of force, or, in other words, to compet.i.tion; and compet.i.tion may, at any moment, become catastrophe. The difference between compet.i.tion and catastrophe is one merely of degree, or rather it is a subjective difference depending upon the point of view of the observer. In other words, all that we can testify to is a certain periodicity of motion, all motion meeting with resistance, the acc.u.mulation of which finally induces motion in another sense. Larger periodicities are made up of smaller periodicities, and, according to the point of view taken, any period of such motion may be regarded as an evolution, that which Fechner terms ”full” stability being only the maximum towards which motion during that period tends. Absolute stability can be conceived only as perfect rest, whether we conceive it as merely an abstraction, its realization as rendered impossible by the conservation of energy, or whether we conceive it as possible in a universe regarded as finite; an absolute stability of motion is a self-contradiction, and a full stability which knows no retrogression is equally a self-contradiction.

Periodicity is, then, all into which the Tendency to Stability resolves itself for nature as we know it.

We perceive, in the actual universe, the fact of a certain imperfect periodicity. This wave form of movement in great and little plays, as Spencer has shown far more elaborately than Fechner, a large part in the universe.

But the evident fact of a present periodicity of imperfect form suggests another possible conception. We are under no necessity to regard the universe as finite either in s.p.a.ce or time. On the contrary. We tend naturally to conceive of it as finite after the a.n.a.logy of particular things which we perceive continually to arise and perish; but as concerns s.p.a.ce, we have no knowledge of any limit, and, as concerns time, the conception of any actual beginning or end to the universe as a whole is only the ancient nave idea which science has disproved in showing that neither matter nor motion ever perish. An infinite universe is conceivable, in which not exactly the same but very similar forms, or forms of which the successive ones closely resemble each other though those widely separated may be very dissimilar, continue to arise and be destroyed to all eternity. The conception of a primal nebular mist is not a necessary inference from astronomic phenomena; it is as easy and as logical to regard the various phases of planetary development revealed to us by the telescope as so many phases of an evolution and dissolution continually recurring in different parts of the universe, one extreme of which is represented by the nebular mist, the other by the cold and lifeless remains of planets gradually suffering dissolution as they revolve through s.p.a.ce. The greater the immensity of the universe is conceived to be, the nearer our conception of it must approach to this type. But the term Tendency to Stability is misapplied when applied to such infinite and imperfect periodicity--to the motion, thus conceived, of the universe as a whole.

The periodicity in the life of organic species may be compared to the wave-motions of light and heat as distinguished from those of water, the individual representing the single wave-length. The a.n.a.logy is not, however, intended--to speak with Bacon--as one of nature, but merely as one of mind. And just here it may be questioned whether Fechner may not have been right, after all, in his a.s.sertion of the dependency of the organism upon periodicity of function, whether the periodic character of the individual life, dependent, as it must be supposed to be, on adaptation to a medium to some degree resisting, does not sacrifice its stability in so far as the increments of resistance lack uniformity.

This is evidently the case in large relations; is it not logically necessary to suppose it so in minute relations, though the fact may not be so evident to the coa.r.s.e measurement of the senses? Experience seems to prove that an approximate periodicity in larger relations, is most consistent with health; and it must be remembered that the non-periodic relations are subordinated to periodic ones, that not only in the case of waking and sleeping, working and eating, but also in those of rest and labor, a certain uniformity is necessary to the best mental and physical condition. A close observation will, I think, reveal a greater periodicity than was at first suspected; since much of it is of so-called ”automatic,” ”unconscious,” or ”half-conscious” nature. It is to be noticed, here, that the termination of individual lives is often in the nature of a catastrophe, and a uniform periodicity of individual development and decay cannot be a.s.signed, except in the form of an average that falls much below the figure attained by the thoroughly healthy individual. There is every reason to believe that if we could sleep, rise, eat, bathe, exercise, work, and rest with the regularity of a clock, we should be the better for it physically. But the irregularities outside the province of our will-power render it impossible for us to order our lives in this manner. Nor do we desire to do so. For these very irregularities, as representing greater or less change to which adaptation is necessary, are, in many cases and within certain lines, the conditions and signs of progress; though they may const.i.tute in other cases and beyond these lines--that is, where they are of too great intensity or duration--conditions of retrogression, the imperfection in periodicity becoming catastrophe, which may extend beyond the individual to his offspring. We may thus infer that the final destruction of the individual organism is conditioned by its own progress and the progress of its species, but that on the other hand, when the destruction of the individual is too abrupt, it may mean catastrophe to the species also, or at least to a part of it, through heredity.

Our considerations so far have been of a nature to convince us that not isolation, but a constancy in the continual action of like relatively small increments of force in the same directions, is the condition of steady evolution. The less constant and the larger the increments, the nearer the changes involved resemble catastrophe, though the catastrophes themselves may be regarded in another light as forming part of an evolution of a higher order. The changes the sun is undergoing may be regarded as evolution in so far as the influence of the cooling medium is a constant one. The earth as a whole and in its parts may be regarded as pa.s.sing through a process of evolution towards full stability in so far as the sun's heat is a constant quant.i.ty, the periodic changes of seasons and of day and night the same. The relation would seem, therefore, to be one of time--the time-relation involved in the duration of outer conditions as constant with reference to the period required for the attainment of stability. Thus the sun's influence upon the earth might appear approximately constant to the human individual, but might represent a rapid change in relation to some stupendous and long-continued evolution in some other part of the universe. Considerations which we have already noticed forbid our regarding any conditions of ”full” as distinguished from absolute stability as anything other than peculiar states single in the system and thus unenduring maxima succeeded by decrease, although the process may be, with reference to any other particular process, so slow, the retrogression from the culminating point so gradual, as to be, with respect to this other process, inappreciable.

And while we are busied with matters which involve the whole multiplicity of relations in the universe, just a word with reference to cause and effect. Which one of these myriad material parts interacting at any moment shall we single out as the cause of the succeeding state? The solidarity of the universe as far as the complete interdependence of all its parts is concerned is clear to us. It is true we cannot reckon with all factors of the universe at once; and the concept of cause and effect is therefore a useful one. But the cause of anything must be, from a positive point of view, just what the methods prescribed for its discovery in any particular case shows it to be: namely, a factor, merely, in the manifold conditions determining a following state, the removal of which means the prevention of the succession of exactly that state. Which, for instance, shall we regard as the cause of an evil act--the character of a man or the temptation offered by circ.u.mstances? The change or removal of either means the change or removal of the act. Neither is complete without the other, and both are involved in the whole complexity of the universe, through heredity on the one hand and the action of nature external to life on the other.

And just here we may glance at Spencer's definition of life as ”the continual adjustment of inner relations to outer relations.” Though emphasizing an important side of evolution, it is evidently incomplete.

Evolution is not only the adjustment of inner relations to outer relations, it is also the adjustment of outer relations to inner relations as well as of inner relations among themselves; or it is a process of mutual adjustment of all the parts engaged in it.

Our a.n.a.lysis, though crude and imperfect, may now be regarded as complete. Our scope will not allow of a more elaborate one. It is fitting, therefore, that we proceed to synthesis. The first matter which presents itself to us, in this connection, is the theory of Heredity and Adaptation mentioned above.

The theory is not a new one, wholly outside Darwin's conception of evolution. The concept of Adaptation represents simply the generalization of all those special causes with which Darwin more particularly occupied himself, and is, in essence, only a proclamation of that universal subjection to natural law which Darwin himself plainly a.s.serted. As such a. generalization it is, however, a useful one; it furnishes us with an expression, for the organic world, of that universal action and reaction through which opposing forces move towards stability by mutual adjustment.

The law of Heredity, again, may be regarded as an organic expression of the more general principle according to which motion that, in the sense defined above, suffers only a minimum of interference, that is, motion which, by a certain equilibrium of mutual relations, is ”approximately”

or ”fully” stable, tends to continue to take place in nearly the same directions, or nearly to repeat itself. It is thus apparent, also, that Heredity is closely related to the more special principle of Habit, or also of Use and Disuse, if only we remember that, whatever the metaphysical truths of Freedom or Determination, the psychical is always accompanied by what may be called equivalents of the physical under natural law. The special laws of Heredity are still enveloped in mystery; I refer, not to that mystery which may be regarded as surrounding all ultimate facts, if we choose to conceive them as expressing or concealing something further unknowable, but to the scientific mystery of ignorance, which time may dissolve. Biologists disagree on this question, the ultimate decision of which must be left to them. Still some general criticism on the results of research in this direction may be allowable from a philosophic standpoint.

The chief point at issue between various theories of Heredity seems to be the degree of importance to be attached to Adaptation: however we may express the question, this is the ultimate form to which it is reducible. Now it is obvious, from the foregoing a.n.a.lysis, that the form of theory which would be most useful to us, if such were attainable, would be one in which the degree of tendency to inheritance as well as the strength of inherited tendency is expressed in terms of the intensity and duration of exercise, use, function, habit, or form of motion or action (however we may choose to term it); and variation is regarded as the resultant of such tendency and change in the environment, or, in other words, deviation from constancy of influence.

It may be useful to inquire to what extent such a general theory is authorized by special ones.

We have the testimony of two of the acknowledged greatest authorities--Darwin and Haeckel--as well as that of a score of other biologists, and specialists in related branches, to the inheritance of peculiarities acquired during the life of the individual.[108] Eimer lays especial stress on the fact, long witnessed to by one cla.s.s of specialists, of the hereditary character of brain-diseases, among which may be reckoned some that are without doubt due to direct influence of the environment.[109] Haeckel and Eimer even instance cases in which mutilation has been inherited.[110] One such instance would be sufficient, in overthrowing the general denial of the inheritance of individual adaptation, to make probable the direct influence of the environment in other cases, the uniformity discoverable in the workings of natural law leading us to suppose that the one instance would not be isolated. It must have weight, too, as an argument, in the judgment of many doubtful cases. Not one such case alone is furnished us, however, but many well-authenticated ones. And it is to be remarked that even Weismann has gradually parted from his original theory, recognizing more and more clearly the element of adaptation in inheritance. It seems open to question, indeed, whether Weismann's theory, in withdrawing the germ-plasm from the direct influence of the environment with which the parent individual is in contact does not exempt it from the universal law of action and reaction. Eimer designates such an opposition as Weismann postulates of the germ-plasm to the rest of the organism as a ”physiological miracle,” and the artificial line thus drawn between the germ-cells before and after the beginning of development as ”opposed to that conformity to law shown in the morphological and physiological unity of living beings.”[111] Ancient ideas seldom conceived of a universality of action and reaction; and ancient belief, isolating phenomena, invested each with some special guiding power. This belief was maintained as the conception of a special vital force long after the increasing knowledge of nature had caused it to be abandoned with regard to inorganic phenomena; and the theory of the continuity of the germ-plasm seems to be a survival, with regard to the comparatively unexplored province of Embryology, of the idea of such a force.

The elements of which the organism is composed are not strange essences or ent.i.ties peculiar to the organic; they are the same with those of inorganic matter, though their combinations differ somewhat from these, both in chemical composition and in the morphological arrangement of the composites. We can easily conceive these differences as coordinate with differences of general form and function; but it is inconceivable that the continual a.s.similation of matter in growth should be at any time without result in function, however comparatively small this result may be in higher forms representing an acc.u.mulation of energy from previous conditions. The separation of form and function is an abstraction, as is that of matter and motion; we cannot suppose the connection of particular functions with particular forms,--particular organization,--to be accidental, any more than we can suppose the particular properties of particular inorganic composites and elements to be accidental or these particular properties to be without result in the organic matter into which the particular composites and elements are taken up.

The environment must contain complementary conditions of function in order that the individual may even come into existence and survive at all. The great question is, then, how much is to be allowed for original tendency in primal organisms and how much is to be reckoned to the account of the action of the environment in the course of evolution.