Part 23 (1/2)

[Ill.u.s.tration: Fig. 72.--Bredichin's Theory of Comets' Tails.]

[Ill.u.s.tration: Fig. 73.--Tails of the Comet of 1858.]

An interesting ill.u.s.tration of this theory is afforded in the case of the celebrated comet of 1858 already referred to, of which a drawing is shown in Fig. 73. We find here, besides the great tail, which is the characteristic feature of the body, two other faint streaks of light.

These are the edges of the hollow cone which forms a tail of Type I.

When we look through the central regions it will be easily understood that the light is not sufficiently intense to be visible; at the edges, however, a sufficient thickness of the cometary matter is presented, and thus we have the appearance shown in this figure. It would seem that Donati's comet possessed one tail due to hydrogen, and another due to some of the compounds of carbon. The carbon compounds involved appear to be of considerable variety, and there is, in consequence, a disposition in the tails of the second type to a more indefinite outline than in the hydrogen tails. Cases have been recorded in which several tails have been seen simultaneously on the same comet. The most celebrated of these is that which appeared in the year 1744. Professor Bredichin has devoted special attention to the theory of this marvellous object, and he has shown with a high degree of probability how the multiform tail could be accounted for. The adjoining figure (Fig. 74) is from a sketch of this object made on the morning of the 7th March by Mademoiselle Kirch at the Berlin Observatory. The figure shows eleven streaks, of which the first ten (counting from the left) represent the bright edges of five of the tails, while the sixth and shortest tail is at the extreme right.

Sketches of this rare phenomenon were also made by Cheseaux at Lausanne and De L'Isle at St. Petersburg. Before the perihelion pa.s.sage the comet had only had one tail, but a very splendid one.

[Ill.u.s.tration: Fig. 74.--The Comet of 1744.]

It is possible to submit some of the questions involved to the test of calculation, and it can be shown that the repulsive force adequate to produce the straight tail of Type I. need only be about twelve times as large as the attraction of gravitation. Tails of the second type could be produced by a repulsive force which was about equal to gravitation, while tails of the third type would only require a repulsive force about one-quarter the power of gravitation.[33] The chief repulsive force known in nature is derived from electricity, and it has naturally been surmised that the phenomena of comets' tails are due to the electric condition of the sun and of the comet. It would be premature to a.s.sert that the electric character of the comet's tail has been absolutely demonstrated; all that can be said is that, as it seems to account for the observed facts, it would be undesirable to introduce some mere hypothetical repulsive force. It must be remembered that on quite other grounds it is known that the sun is the seat of electric phenomena.

As the comet gradually recedes from the sun the repulsive force becomes weaker, and accordingly we find that the tail of the comet declines. If the comet be a periodic one, the same series of changes may take place at its next return to perihelion. A new tail is formed, which also gradually disappears as the comet regains the depths of s.p.a.ce. If we may employ the a.n.a.logy of terrestrial vapours to guide us in our reasoning, then it would seem that, as the comet retreats, its tail would condense into myriads of small particles. Over these small particles the law of gravitation would resume its undivided sway, no longer obscured by the superior efficiency of the repulsion. The ma.s.s of the comet is, however, so extremely small that it would not be able to recall these particles by the mere force of attraction. It follows that, as the comet at each perihelion pa.s.sage makes a tail, it must on each occasion expend a corresponding quant.i.ty of tail-making material. Let us suppose that the comet was endowed in the beginning with a certain capital of those particular materials which are adapted for the production of tails. Each perihelion pa.s.sage witnesses the formation of a tail, and the expenditure of a corresponding amount of the capital. It is obvious that this operation cannot go on indefinitely. In the case of the great majority of comets the visits to perihelion are so extremely rare that the consequences of the extravagance are not very apparent; but to those periodic comets which have short periods and make frequent returns, the consequences are precisely what might have been antic.i.p.ated: the tail-making capital has been gradually squandered, and thus at length we have the spectacle of a comet without any tail at all. We can even conceive that a comet may in this manner be completely dissipated, and we shall see in the next chapter how this fate seems to have overtaken Biela's periodic comet.

But as it sweeps through the solar system the comet may chance to pa.s.s very near one of the larger planets, and, in pa.s.sing, its motion may be seriously disturbed by the attraction of the planet. If the velocity of the comet is accelerated by this disturbing influence, the orbit will be changed from a parabola into another curve known as a hyperbola, and the comet will swing round the sun and pa.s.s away never to return. But if the planet is so situated as to r.e.t.a.r.d the velocity of the comet, the parabolic orbit will be changed into an ellipse, and the comet will become a periodic one. We can hardly doubt that some periodic comets have been ”captured” in this manner and thereby made permanent members of our solar system, if we remark that the comets of short periods (from three to eight years) come very near the orbit of Jupiter at some point or other of their paths. Each of them must, therefore, have been near the giant planet at some moment during their past history. Similarly the other periodic comets of longer period approach near to the orbits of either Saturn, Ura.n.u.s, or Neptune, the last-mentioned planet being probably responsible for the periodicity of Halley's comet. We have, indeed, on more than one occasion, actually witnessed the violent disturbance of a cometary orbit. The most interesting case is that of Lexell's comet. In 1770 the French astronomer Messier (who devoted himself with great success to the discovery of comets) detected a comet for which Lexell computed the orbit, and found an ellipse with a period of five years and some months. Yet the comet had never been seen before, nor did it ever come back again. Long afterwards it was found, from most laborious investigations by Burckhardt and Le Verrier, that the comet had moved in a totally different orbit previous to 1767. But at the beginning of the year 1767 it happened to come so close to Jupiter that the powerful attraction of this planet forced it into a new orbit, with a period of five and a half years. It pa.s.sed the perihelion on the 13th August, 1770, and again in 1776, but in the latter year it was not conveniently situated for being seen from the earth. In the summer of 1779 the comet was again in the neighbourhood of Jupiter, and was thrown out of its elliptic orbit, so that we have never seen it since, or, perhaps, it would be safer to say that we have not with certainty identified Lexell's comet with any comet observed since then. We are also, in the case of several other periodic comets, able to fix in a similar way the date when they started on their journeys in their present elliptic orbits.

Such is a brief outline of the princ.i.p.al facts known with regard to these interesting but perplexing bodies. We must be content with the recital of what we know, rather than hazard guesses about matters beyond our reach. We see that they are obedient to the great laws of gravitation, and afford a striking ill.u.s.tration of their truth. We have seen how modern science has dissipated the superst.i.tion with which, in earlier ages, the advent of a comet was regarded. We no longer regard such a body as a sign of impending calamity; we may rather look upon it as an interesting and a beautiful visitor, which comes to please us and to instruct us, but never to threaten or to destroy.

CHAPTER XVII.

SHOOTING STARS.

Small Bodies of our System--Their Numbers--How they are Observed--The Shooting Star--The Theory of Heat--A Great Shooting Star--The November Meteors--Their Ancient History--The Route followed by the Shoal--Diagram of the Shoal of Meteors--How the Shoal becomes Spread out along its Path--Absorption of Meteors by the Earth--The Discovery of the Relation between Meteors and Comets--The Remarkable Investigations concerning the November Meteors--Two Showers in Successive Years--No Particles have ever been Identified from the Great Shooting Star Showers--Meteoric Stones--Chladni's Researches--Early Cases of Stone-falls--The Meteorite at Ensisheim--Collections of Meteorites--The Rowton Siderite--Relative Frequency of Iron and Stony Meteorites--Fragmentary Character of Meteorites--Tschermak's Hypothesis--Effects of Gravitation on a Missile ejected from a Volcano--Can they have come from the Moon?--The Claims of the Minor Planets to the Parentage of Meteorites--Possible Terrestrial Origin--The Ovifak Iron.

In the preceding chapters we have dealt with the gigantic bodies which form the chief objects in what we know as the solar system. We have studied mighty planets measuring thousands of miles in diameter, and we have followed the movements of comets whose dimensions are often to be told by millions of miles. Once, indeed, in a previous chapter we have made a descent to objects much lower in the scale of magnitude, and we have examined that numerous cla.s.s of small bodies which we call the minor planets. It is now, however, our duty to make a still further, and this time a very long step, downwards in the scale of magnitude. Even the minor planets must be regarded as colossal objects when compared with those little bodies whose presence is revealed to us in an interesting and sometimes in a striking manner.

These small bodies compensate in some degree for their minute size by the profusion in which they exist. No attempt, indeed, could be made to tell in figures the myriads in which they swarm throughout s.p.a.ce. They are probably of very varied dimensions, some of them being many pounds or perhaps tons in weight, while others seem to be not larger than pebbles, or even than grains of sand. Yet, insignificant as these bodies may seem, the sun does not disdain to undertake their control. Each particle, whether it be as small as the mote in a sunbeam or as mighty as the planet Jupiter, must perforce trace out its path around the sun in conformity with the laws of Kepler.

Who does not know that beautiful occurrence which we call a shooting star, or which, in its more splendid forms, is sometimes called a meteor or fireball? It is to objects of this cla.s.s that we are now to direct our attention.

A small body is moving round the sun. Just as a mighty planet revolves in an ellipse, so even a small object will be guided round and round in an ellipse with the sun in the focus. There are, at the present moment, inconceivable myriads of such meteors moving in this manner. They are too small and too distant for our telescopes, and we never see them except under extraordinary circ.u.mstances.

When the meteor flashes into view it is moving with such enormous velocity that it often traverses more than twenty miles in a second of time. Such a velocity is almost impossible near the earth's surface: the resistance of the air would prevent it. Aloft, in the emptiness of s.p.a.ce, there is no air to impede its flight. It may have been moving round and round the sun for thousands, perhaps for millions of years, without suffering any interference; but the supreme moment arrives, and the meteor perishes in a streak of splendour.

In the course of its wanderings the body comes near the earth, and within a few hundred miles of its surface begins to encounter the upper surface of the atmosphere with which the earth is enclosed. To a body moving with the appalling velocity of a meteor, a plunge into the atmosphere is usually fatal. Even though the upper layers of air are excessively attenuated, yet they suddenly check the velocity almost as a rifle bullet would be checked when fired into water. As the meteor rushes through the atmosphere the friction of the air warms its surface; gradually it becomes red-hot, then white-hot, and is finally driven off into vapour with a brilliant light, while we on the earth, one or two hundred miles below, exclaim: ”Oh, look, there is a shooting star!”

We have here an experiment ill.u.s.trating the mechanical theory of heat.

It may seem incredible that mere friction should be sufficient to generate heat enough to produce so brilliant a display, but we must recollect two facts: first, that the velocity of the meteor is, perhaps, one hundred times that of a rifle bullet; and, second, that the efficiency of friction in developing heat is proportional to the square of the velocity. The meteor in pa.s.sing through the air may therefore develop by the friction of the air about ten thousand times as much heat as the rifle bullet. We do not make an exaggerated estimate in supposing that the latter missile becomes heated ten degrees by friction; yet if this be admitted, we must grant that there is such an enormous development of heat attending the flight of the meteor that even a fraction of it would be sufficient to drive the object into vapour.

Let us first consider the circ.u.mstances in which these external bodies are manifested to us, and, for the sake of ill.u.s.tration, we may take a remarkable fireball which occurred on November 6th, 1869. This body was seen from many different places in England; and by combining and comparing these observations, we obtain accurate information as to the height of the object and the velocity with which it travelled.

It appears that this meteor commenced to be visible at a point ninety miles above Frome, in Somersets.h.i.+re, and that it vanished twenty-seven miles over the sea, near St. Ives, in Cornwall. The path of the body, and the princ.i.p.al localities from which it was observed, are shown in the map (Fig. 75). The whole length of its visible course was about 170 miles, which was performed in a period of five seconds, thus giving an average velocity of thirty-four miles per second. A remarkable feature in the appearance which this fireball presented was the long persistent streak of luminous cloud, about fifty miles long and four miles wide, which remained in sight for fully fifty minutes. We have in this example an ill.u.s.tration of the chief features of the phenomena of a shooting star presented on a very grand scale. It is, however, to be observed that the persistent luminous streak is not a universal, nor, indeed, a very common characteristic of a shooting star.

[Ill.u.s.tration: Fig. 75.--The Path of the Fireball of November 6th, 1869.]

The small objects which occasionally flash across the field of the telescope show us that there are innumerable telescopic shooting stars, too small and too faint to be visible to the unaided eye. These objects are all dissipated in the way we have described; it is, in fact, only at the moment, and during the process of their dissolution, that we become aware of their existence. Small as these missiles probably are, their velocity is so prodigious that they would render the earth uninhabitable were they permitted to rain down unimpeded on its surface. We must, therefore, among the other good qualities of our atmosphere, not forget that it const.i.tutes a kindly screen, which s.h.i.+elds us from a tempest of missiles, the velocity of which no artillery could equal. It is, in fact, the very fury of these missiles which is the cause of their utter destruction. Their anxiety to strike us is so great, that friction dissolves them into harmless vapour.

Next to a grand meteor such as that we have just described, the most striking display in connection with shooting stars is what is known as a shower. These phenomena have attracted a great deal of attention within the last century, and they have abundantly rewarded the labour devoted to them by affording some of the most interesting astronomical discoveries of modern times.