Part 19 (1/2)
[Ill.u.s.tration: Fig. 66.--Prof. Keeler's Method of Measuring the Rotation of Saturn's Ring.]
But what the telescope could not show, the spectroscope has lately demonstrated in a most effective and interesting manner. We have explained in the chapter on the sun how the motion of a source of light along the line of vision, towards or away from the observer, produces a slight s.h.i.+ft in the position of the lines of the spectrum. By the measurement of the displacement of the lines the direction and amount of the motion of the source of light may be determined. We ill.u.s.trated the method by showing how it had actually been used to measure the speed of rotation of the solar surface. In 1895 Professor Keeler,[26] Director of the Allegheny Observatory, succeeded in measuring the rotation of Saturn's ring in this manner. He placed the slit of his spectroscope across the ball, in the direction of the major axis of the elliptic figure which the effect of perspective gives the ring as shown by the parallel lines in Fig. 66 stretching from E to W. His photographic plate should then show three spectra close together, that of the ball of Saturn in the middle, separated by dark intervals from the narrower spectra above and below it of the two handles (or ansae, as they are generally called) of the ring. In Fig. 67 we have represented the behaviour of any one line of the spectrum under various suppositions as to rotation or non-rotation of Saturn and the ring. At the top (1) we see how each line would look if there was no rotatory motion; the three lines produced by ring, planet, and ring are in a straight line. Of course the spectrum, which is practically a very faint copy of the solar spectrum, shows the princ.i.p.al dark Fraunhofer lines, so that the reader must imagine these for himself, parallel to the one we show in the figure. But Saturn and the ring are not standing still, they are rotating, the eastern part (at E) moving towards us, and the western part (W) moving away from us.[27] At E the line will therefore be s.h.i.+fted towards the violet end of the spectrum and at W towards the red, and as the actual linear velocity is greater the further we get away from the centre of Saturn (a.s.suming ring and planet to rotate together), the lines would be turned as in Fig. 67 (2), but the three would remain in a straight line. If the ring consisted of two independent rings separated by Ca.s.sini's division and rotating with different velocities, the lines would be situated as in Fig. 67 (3), the lines due to the inner ring being more deflected than those due to the outer ring, owing to the greater velocity of the inner ring.
[Ill.u.s.tration: Fig. 67.--Prof. Keeler's Method of Measuring the Rotation of Saturn's Ring.]
Finally, let us consider the case of the rings, consisting of innumerable particles moving round the planet in accordance with Kepler's third law. The actual velocities of these particles would be per second:--
At outer edge of ring 1069 miles.
At middle of ring 1168 miles.
At inner edge of ring 1301 miles.
Rotation speed at surface of planet 638 miles.
The s.h.i.+fting of the lines of the spectrum should be in accordance with these velocities, and it is easy to see that the lines ought to lie as in the fourth figure. When Professor Keeler came to examine the photographed spectra, he found the lines of the three spectra tilted precisely in this manner, showing that the outer edge of the ring was travelling round the planet with a smaller linear velocity than the inner one, as it ought to do if the sources of light (or, rather, the reflectors of sunlight) were independent particles free to move according to Kepler's third law, and as it ought not to do if the ring, or rings, were rigid, in which case the outer edge would have the greatest linear speed, as it had to travel through the greatest distance. Here, at last, was the proof of the meteoritic composition of Saturn's ring. Professor Keeler's beautiful discovery has since been verified by repeated observations at the Allegheny, Lick, Paris, and Pulkova Observatories; the actual velocities resulting from the observed displacements of the lines have been measured and found to agree well (within the limits of the errors of observation) with the calculated velocities, so that this brilliant confirmation of the mathematical deductions of Clerk Maxwell is raised beyond the possibility of doubt.
The spectrum of Saturn is so faint that only the strongest lines of the solar spectrum can be seen in it, but the atmosphere of the planet seems to exert a considerable amount of general absorption in the blue and violet parts of the spectrum, which is especially strong near the equatorial belt, while a strong band in the red testifies to the density of the atmosphere. This band is not seen in the spectrum of the rings, around which there can therefore be no atmosphere.
As Saturn's ring is itself unique, we cannot find elsewhere any very pertinent ill.u.s.tration of a structure so remarkable as that now claimed for the ring. Yet the solar system does show some a.n.a.logous phenomena.
There is, for instance, one on a very grand scale surrounding the sun himself. We allude to the mult.i.tude of minor planets, all confined within a certain region of the system. Imagine these planets to be vastly increased in number, and those orbits which are much inclined to the rest flattened down and otherwise adjusted, and we should have a ring surrounding the sun, thus producing an arrangement not dissimilar from that now attributed to Saturn.
It is tempting to linger still longer over this beautiful system, to speculate on the appearance which the ring would present to an inhabitant of Saturn, to conjecture whether it is to be regarded as a permanent feature of our system in the same way as we attribute permanence to our moon or to the satellites of Jupiter. Looked at from every point of view, the question is full of interest, and it provides occupation abundant for the labours of every type of astronomer. If he be furnished with a good telescope, then has he ample duties to fulfil in the task of surveying, of sketching, and of measuring. If he be one of those useful astronomers who devote their energies not to actual telescopic work, but to forming calculations based on the observations of others, then the beautiful system of Saturn provides copious material. He has to foretell the different phases of the ring, to announce to astronomers when each feature can be best seen, and at what hour each element can be best determined. He has also to predict the times of the movements of Saturn's satellites, and the other phenomena of a system more elaborate than that of Jupiter.
Lastly, if the astronomer be one of that cla.s.s--perhaps, from some points of view, the highest cla.s.s of all--who employ the most profound researches of the human intellect to unravel the dynamical problems of astronomy, he, too, finds in Saturn problems which test to the utmost, even if they do not utterly transcend, the loftiest flights of a.n.a.lysis.
He discovers in Saturn's ring an object so utterly unlike anything else, that new mathematical weapons have to be forged for the encounter. He finds in the system so many extraordinary features, and such delicacy of adjustment, that he is constrained to admit that if he did not actually see Saturn's rings before him, he would not have thought that such a system was possible. The mathematician's labours on this wondrous system are at present only in their infancy. Not alone are the researches of so abstruse a character as to demand the highest genius for this branch of science, but even yet the materials for the inquiry have not been acc.u.mulated. In a discussion of this character, observation must precede calculation. The scanty observations. .h.i.therto obtained, however they may ill.u.s.trate the beauty of the system, are still utterly insufficient to form the basis of that great mathematical theory of Saturn which must eventually be written.
But Saturn possesses an interest for a far more numerous cla.s.s of persons than those who are specially devoted to astronomy. It is of interest, it must be of interest, to every cultivated person who has the slightest love for nature. A lover of the picturesque cannot behold Saturn in a telescope without feelings of the liveliest emotion; while, if his reading and reflection have previously rendered him aware of the colossal magnitude of the object at which he is looking, he will be constrained to admit that no more remarkable spectacle is presented in the whole of nature.
We have pondered so long over the fascinations of Saturn's ring that we can only give a very brief account of that system of satellites by which the planet is attended. We have already had occasion to allude more than once to these bodies; it only remains now to enumerate a few further particulars.
It was on the 25th of March, 1655, that the first satellite of Saturn was detected by Huyghens, to whose penetration we owe the discovery of the true form of the ring. On the evening of the day referred to, Huyghens was examining Saturn with a telescope constructed with his own hands, when he observed a small star-like object near the planet. The next night he repeated his observations, and it was found that the star was accompanying the planet in its progress through the heavens. This showed that the little object was really a satellite to Saturn, and further observations revealed the fact that it was revolving around him in a period of 15 days, 22 hours, 41 minutes. Such was the commencement of that numerous series of discoveries of satellites which accompany Saturn. One by one they were detected, so that at the present time no fewer than nine are known to attend the great planet through his wanderings. The subsequent discoveries were, however, in no case made by Huyghens, for he abandoned the search for any further satellites on grounds which sound strange to modern ears, but which were quite in keeping with the ideas of his time. It appears that from some principle of symmetry, Huyghens thought that it would accord with the fitness of things that the number of satellites, or secondary planets, should be equal in number to the primary planets themselves. The primary planets, including the earth, numbered six; and Huyghens' discovery now brought the total number of satellites to be also six. The earth had one, Jupiter had four, Saturn had one, and the system was complete.
Nature, however, knows no such arithmetical doctrines as those which Huyghens attributed to her. Had he been less influenced by such prejudices, he might, perhaps, have antic.i.p.ated the labours of Ca.s.sini, who, by discovering other satellites of Saturn, demonstrated the absurdity of the doctrine of numerical equality between planets and satellites. As further discoveries were made, the number of satellites was at first raised above the number of planets; but in recent times, when the swarm of minor planets came to be discovered, the number of planets speedily reached and speedily pa.s.sed the number of their attendant satellites.
It was in 1671, about sixteen years after the discovery of the first satellite of Saturn, that a second was discovered by Ca.s.sini. This is the outermost of the older satellites; it takes 79 days to travel round Saturn. In the following year he discovered another; and twelve years later, in 1684, still two more; thus making a total of five satellites to this planet.
[Ill.u.s.tration: Fig. 68.--Transit of t.i.tan and its Shadow, by F. Terby Louvain, 12th April, 1892.]
The complexity of the Saturnian system had now no rival in the heavens.
Saturn had five satellites, and Jupiter had but four, while at least one of the satellites of Saturn, named t.i.tan, was larger than any satellite of Jupiter.[28] Some of the discoveries of Ca.s.sini had been made with telescopes of quite monstrous dimensions. The length of the instrument, or rather the distance at which the object-gla.s.s was placed, was one hundred feet or more from the eye of the observer. It seemed hardly possible to push telescopic research farther with instruments of this c.u.mbrous type. At length, however, the great reformation in the construction of astronomical instruments began to dawn. In the hands of Herschel, it was found possible to construct reflecting telescopes of manageable dimensions, which were both more powerful and more accurate than the long-focussed lenses of Ca.s.sini. A great instrument of this kind, forty feet long, just completed by Herschel, was directed to Saturn on the 28th of August, 1789. Never before had the wondrous planet been submitted to a scrutiny so minute. Herschel was familiar with the labours of his predecessors. He had often looked at Saturn and his five moons in inferior telescopes; now again he saw the five moons and a star-like object so near the plane of the ring that he conjectured this to be a sixth satellite. A speedy method of testing this conjecture was at hand. Saturn was then moving rapidly over the heavens. If this new object were in truth a satellite, then it must be carried on by Saturn.
Herschel watched with anxiety to see whether this would be the case. A short time sufficed to answer the question; in two hours and a half the planet had moved to a distance quite appreciable, and had carried with him not only the five satellites already known, but also this sixth object. Had this been a star it would have been left behind; it was not left behind, and hence it, too, was a satellite. Thus, after the long lapse of a century, the telescopic discovery of satellites to Saturn recommenced. Herschel, as was his wont, observed this object with unremitting ardour, and discovered that it was much nearer to Saturn than any of the previously known satellites. In accordance with the general law, that the nearer the satellite the shorter the period of revolution, Herschel found that this little moon completed a revolution in about 1 day, 8 hours, 53 minutes. The same great telescope, used with the same unrivalled skill, soon led Herschel to a still more interesting discovery. An object so small as only to appear like a very minute point in the great forty-foot reflector was also detected by Herschel, and was by him proved to be a satellite, so close to the planet that it completed a revolution in the very brief period of 22 hours and 37 minutes. This is an extremely delicate object, only to be seen by the best telescopes in the brief intervals when it is not entirely screened from view by the ring.
Again another long interval elapsed, and for almost fifty years the Saturnian system was regarded as consisting of the series of rings and of the seven satellites. The next discovery has a singular historical interest. It was made simultaneously by two observers--Professor Bond, of Cambridge, Ma.s.s., and Mr. La.s.sell, of Liverpool--for on the 19th September, 1848, both of these astronomers verified that a small point which they had each seen on previous nights was really a satellite. This object is, however, at a considerable distance from the planet, and requires 21 days, 7 hours, 28 minutes for each revolution; it is the seventh in order from the planet.
Yet one more extremely faint outer satellite was discerned by photography on the 16th, 17th, and 18th August, 1898, by Professor W.H.
Pickering. This object is much more distant from the planet than the larger and older satellites. Its motion has not yet been fully determined, but probably it requires not less than 490 days to perform a single revolution.
From observations of the satellites it has been found that 3,500 globes as heavy as Saturn would weigh as much as the sun.
A law has been observed by Professor Kirkwood, which connects together the movements of the four interior satellites of Saturn. This law is fulfilled in such a manner as leads to the supposition that it arises from the mutual attraction of the satellites. We have already described a similar law relative to three of the satellites of Jupiter. The problem relating to Saturn, involving as it does no fewer than four satellites, is one of no ordinary complexity. It involves the theory of Perturbations to a greater degree than that to which mathematicians are accustomed in their investigation of the more ordinary features of our system. To express this law it is necessary to have recourse to the daily movements of the satellites; these are respectively--
SATELLITE. DAILY MOVEMENT.