Part 14 (1/2)

Venus and Mars have, from one point of view, quite peculiar claims on our attention. They are our nearest planetary neighbours, on either side. We may naturally expect to learn more of them than of the other planets farther off. In the case of Venus, however, this antic.i.p.ation can hardly be realised, for, as we have already pointed out, its dense atmosphere prevents us from making a satisfactory telescopic examination. When we turn to our other planetary neighbour, Mars, we are enabled to learn a good deal with regard to his appearance. Indeed, with the exception of the moon, we are better acquainted with the details of the surface of Mars than with those of any other celestial body.

This beautiful planet offers many features for consideration besides those presented by its physical structure. The orbit of Mars is one of remarkable proportions, and it was by the observations of this...o...b..t that the celebrated laws of Kepler were discovered. During the occasional approaches of Mars to the earth it has been possible to measure its distance with accuracy, and thus another method of finding the sun's distance has arisen which, to say the least, may compete in precision with that afforded by the transit of Venus. It must also be observed that the greatest achievement in pure telescopic research which this century has witnessed was that of the discovery of the satellites of Mars.

To the unaided eye this planet generally appears like a star of the first magnitude. It is usually to be distinguished by its ruddy colour, but the beginner in astronomy cannot rely on its colour only for the identification of Mars. There are several stars nearly, if not quite, as ruddy as this globe. The bright star Aldebaran, the brightest star in the constellation of the Bull, has often been mistaken for the planet.

It often resembles Betelgeuze, a brilliant point in the constellation of Orion. Mistakes of this kind will be impossible if the learner has first studied the princ.i.p.al constellations and the more brilliant stars. He will then find great interest in tracing out the positions of the planets, and in watching their ceaseless movements.

[Ill.u.s.tration: Fig. 48.--The Orbits of the Earth and of Mars, showing the Favourable Opposition of 1877.]

The position of each orb can always be ascertained from the almanac.

Sometimes the planet will be too near the sun to be visible. It will rise with the sun and set with the sun, and consequently will not be above the horizon during the night. The best time for seeing one of the planets situated like Mars will be during what is called its opposition.

This state of things occurs when the earth intervenes directly between the planet and the sun. In this case, the distance from Mars to the earth is less than at any other time. There is also another advantage in viewing Mars during opposition. The planet is then at one side of the earth and the sun at the opposite side, so that when Mars is high in the heavens the sun is directly beneath the earth; in other words, the planet is then at its greatest elevation above the horizon at midnight.

Some oppositions of Mars are, however, much more favourable than others.

This is distinctly shown in Fig. 48, which represents the orbit of Mars and the orbit of the Earth accurately drawn to scale. It will be seen that while the orbit of the earth is very nearly circular, the orbit of Mars has a very decided degree of eccentricity; indeed, with the exception of the orbit of Mercury, that of Mars has the greatest eccentricity of any orbit of the larger planets in our system.

The value of an opposition of Mars for telescopic purposes will vary greatly according to circ.u.mstances. The favourable oppositions will be those which occur as near as possible to the 26th of August. The other extreme will be found in an opposition which occurs near the 22nd of February. In the latter case the distance between the planet and the earth is nearly twice as great as the former. The last opposition which was suitable for the highest cla.s.s of work took place in the year 1877.

Mars was then a magnificent object, and received much, and deserved, attention. The favourable oppositions follow each other at somewhat irregular intervals; the last occurred in the year 1892, and another will take place in the year 1909.

The apparent movements of Mars are by no means simple. We can imagine the embarra.s.sment of the early astronomer who first undertook the task of attempting to decipher these movements. The planet is seen to be a brilliant and conspicuous object. It attracts the astronomer's attention; he looks carefully, and he sees how it lies among the constellations with which he is familiar. A few nights later he observes the same body again; but is it exactly in the same place? He thinks not.

He notes more carefully than before the place of the planet. He sees how it is situated with regard to the stars. Again, in a few days, his observations are repeated. There is no longer a trace of doubt about the matter--Mars has decidedly changed his position. It is veritably a wanderer.

Night after night the primitive astronomer is at his post. He notes the changes of Mars. He sees that it is now moving even more rapidly than it was at first. Is it going to complete the circuit of the heavens? The astronomer determines to watch the orb and see whether this surmise is justified. He pursues his task night after night, and at length he begins to think that the body is not moving quite so rapidly as at first. A few nights more, and he is sure of the fact: the planet is moving more slowly. Again a few nights more, and he begins to surmise that the motion may cease; after a short time the motion does cease, and the object seems to rest; but is it going to remain at rest for ever?

Has its long journey been finished? For many nights this seems to be the case, but at length the astronomer suspects that the planet must be commencing to move backwards. A few nights more, and the fact is confirmed beyond possibility of doubt, and the extraordinary discovery of the direct and the retrograde movement of Mars has been accomplished.

[Ill.u.s.tration: Fig. 49.--The Apparent Movements of Mars In 1877.]

In the greater part of its journey around the heavens Mars seems to move steadily from the west to the east. It moves backwards, in fact, as the moon moves and as the sun moves. It is only during a comparatively small part of its path that those elaborate movements are accomplished which presented such an enigma to the primitive observer. We show in the adjoining picture (Fig. 49) the track of the actual journey which Mars accomplished in the opposition of 1877. The figure only shows that part of its path which presents the anomalous features; the rest of the orbit is pursued, not indeed with uniform velocity, but with unaltered direction.

This complexity of the apparent movements of Mars seems at first sight fatal to the acceptance of any simple and elementary explanation of the planetary motion. If the motion of Mars were purely elliptic, how, it may well be said, could it perform this extraordinary evolution? The elucidation is to be found in the fact that the earth on which we stand is itself in motion. Even if Mars were at rest, the fact that the earth moves would make the planet appear to move. The apparent movements of Mars are thus combined with the real movements. This circ.u.mstance will not embarra.s.s the geometer. He is able to disentangle the true movement of the planet from its a.s.sociation with the apparent movement, and to account completely for the complicated evolutions exhibited by Mars.

Could we transfer our point of view from the ever-s.h.i.+fting earth to an immovable standpoint, we should then see that the shape of the orbit of Mars was an ellipse, described around the sun in conformity with the laws which Kepler discovered by observations of this planet.

Mars takes 687 days to travel round the sun, its average distance from that body being 141,500,000 miles. Under the most favourable circ.u.mstances the planet, at the time of opposition, may approach the earth to a distance not greater than about 35,500,000 miles. No doubt this seems an enormous distance, when estimated by any standard adapted for terrestrial measurements; it is, however, hardly greater than the distance of Venus when nearest, and it is much less than the distance from the earth to the sun.

We have explained how the _form_ of the solar system is known from Kepler's laws, and how the absolute size of the system and of its various parts can be known when the direct measurement of any one part has been accomplished. A close approach of Mars affords a favourable opportunity for measuring his distance, and thus, in a different way, solving the same problem as that investigated by the transit of Venus.

We are thus led a second time to a knowledge of the distance of the sun and the distances of the planets generally, and to many other numerical facts about the solar system.

On the occasion of the opposition of Mars in 1877 a successful attempt was made to apply this refined process to the solution of the problem of celestial measurement. It cannot be said to have been the first occasion on which this method was suggested, or even practically attempted. The observations of 1877 were, however, conducted with such skill and with such minute attention to the necessary precautions as to render them an important contribution to astronomy. Dr. David Gill, now her Majesty's Astronomer at the Cape of Good Hope, undertook a journey to the Island of Ascension for the purpose of observing the parallax of Mars in 1877.

On this occasion Mars approached to the earth so closely as to afford an admirable opportunity for the application of the method. Dr. Gill succeeded in obtaining a valuable series of measurements, and from them he concluded the distance of the sun with an accuracy somewhat superior to that attainable by the transit of Venus.

There is yet another method by which Mars can be made to give us information as to the distance of the sun. This method is one of some delicacy, and is interesting from its connection with the loftiest enquiries in mathematical astronomy. It was foreshadowed in the Dynamical theory of Newton, and was wrought to perfection by Le Verrier.

It is based upon the great law of gravitation, and is intimately a.s.sociated with the splendid discoveries in planetary perturbation which form so striking a chapter in modern astronomical discovery.

There is a certain relation between two quant.i.ties which at first sight seems quite independent. These quant.i.ties are the ma.s.s of the earth and the distance of the sun. The distance of the sun bears to a certain distance (which can be calculated when we know the intensity of gravitation at the earth's surface, the size of the earth and the length of the year) the same proportion that the cube root of the sun's ma.s.s bears to the cube root of that of the earth. There is no uncertainty about this result, and the consequence is obvious. If we have the means of weighing the earth in comparison with the sun, then the distance of the sun can be immediately deduced. How are we to place our great earth in the weighing scales? This is the problem which Le Verrier has shown us how to solve, and he does so by invoking the aid of the planet Mars.

If Mars in his revolution around the sun were solely swayed by the attraction of the sun, he would, in accordance with the well-known laws of planetary motion, follow for ever the same elliptic path. At the end of one century, or even of many centuries, the shape, the size, and the position of that ellipse would remain unaltered. Fortunately for our present purpose, a disturbance in the orbit of Mars is produced by the earth. Although the ma.s.s of our globe is so much less than that of the sun, yet the earth is still large enough to exercise an appreciable attraction on Mars. The ellipse described by the planet is consequently not invariable. The shape of that ellipse and its position gradually change, so that the position of the planet depends to some extent upon the ma.s.s of the earth. The place in which the planet is found can be determined by observation; the place which the planet would have had if the earth were absent can be found by calculation. The difference between the two is due to the attraction of the earth, and, when it has been measured, the ma.s.s of the earth can be ascertained. The amount of displacement increases from one century to another, but as the rate of growth is small, ancient observations are necessary to enable the measures to be made with accuracy.

A remarkable occurrence which took place more than two centuries ago fortunately enables the place of Mars to be determined with great precision at that date. On the 1st of October, 1672, three independent observers witnessed the occultation of a star in Aquarius by the ruddy planet. The place of the star is known with accuracy, and hence we are provided with the means of indicating the exact point in the heavens occupied by Mars on the day in question. From this result, combined with the modern meridian observations, we learn that the displacement of Mars by the attraction of the earth has, in the lapse of two centuries, grown to about five minutes of arc (294 seconds). It has been maintained that this cannot be erroneous to the extent of more than a second, and hence it would follow that the earth's ma.s.s is determined to about one three-hundredth part of its amount. If no other error were present, this would give the sun's distance to about one nine-hundredth part.