Part 6 (1/2)

Thus stray hues from other parts of the spectrum tend to neutralize the yellow sensation, which would be strong if each of the pigments were pure in the spectral sense. Pigment absorption affects all palette mixtures, and, failing to obtain a satisfactory yellow by mixture of red and green, painters use original yellow pigments,--such as aureolin, cadmium, and lead chromate,--each of them also impure but giving a dominant sensation of yellow. Did the eye discriminate, as does the ear when it a.n.a.lyzes the separate tones of a chord, then we should recognize that yellow pigments emit both red and green rays.

White light dispersed into a colored band by one prism, may have the process reversed by a second prism, so that the eye sees again only white light. But this would not be so, did not the balance of red, green, and violet-blue sensations remain undisturbed. All our ideas of color harmony are based upon this fundamental relation, and, if pigments are to render harmonious effects, we must learn to control their impurities so as to preserve a balance of red, green, and violet-blue.

Otherwise, the excessive chroma and value of red and yellow pigments so overwhelm the lesser degrees of green and blue pigments that no balance is possible, and the colorist of fine perception must reject not alone the theoretical, but also the practical outcome of a ”red-yellow-blue”

theory.

Some of the points raised in this discussion are rather subtle for students, and may well be left until they arise in a study of optics, but the teacher should grasp them clearly, so as not to be led into false statements about primary and complementary hues.

CHAPTER IV.

PRISMATIC COLOR.

+Pure color is seen in the spectrum of sunlight.+

(87) The strongest sensation of color is gained in a darkened room, with a prism used to split a beam of sunlight into its various wave lengths.

Through a narrow slit there enters a straight pencil of light which we are accustomed to think of as _white_, although it is a bundle of variously colored rays (or waves of ether) whose union and balance is so perfect that no single ray predominates.

[Ill.u.s.tration: Fig. 13.]

(88) Cover the narrow slit, and we are plunged in darkness. Admit the beam, and the eye feels a powerful contrast between the spot of light on the floor and its surrounding darkness. Place a triangular gla.s.s prism near the slit to intercept the beam of white light, and suddenly there appears on the opposite wall a band of brilliant colors. This delightful experiment rivets the eye by the beauty and purity of its hues. All other colors seem weak by comparison.

Their weakness is due to impurity, for all pigments and dyes reflect portions of hues other than their dominant one, which tend to ”gray” and diminish their chroma.

(89) But prismatic color is pure, or very nearly so, because the shape of the gla.s.s refracts each hue, and separates it by the length of its ether wave. These waves have been measured, and science can name each hue by its wave length. Thus a certain red is known as M. 6867, and a certain green sensation is M. 5269.[21] Without attempting any scientific a.n.a.lysis of color, let it be said that Sir Isaac Newton made his series of experiments in 1687, and was privileged to name this color sequence by seven steps which he called red, orange, yellow, green, blue, violet, and indigo. Later a scientist named Fraunhofer discovered fine black lines crossing the solar spectrum, and marked them with letters of the alphabet from a to h. These with the wave length serve to locate every hue and define every step in the sequence. Since Newton's time it has been proved that only three of the spectral hues are _primary_; viz., a red, a green, and a violet-blue, while their mixture produces all other gradations. By receiving the spectrum on an opaque screen with fine slits that fit the red and green waves, so that they alone pa.s.s through, these two primary hues can be received on mirrors inclined at such an angle as to unite on another screen, where, instead of red or green, the eye sees only yellow.[22]

[Footnote 21: See Micron in Glossary.]

[Footnote 22: The fact that the spectral union of red and green makes yellow is a matter of surprise to practical workers in color who are familiar with the action of pigments, but unfamiliar with spectrum a.n.a.lysis. Yellow seems to them a primary and indispensable color, because it cannot be made by the union of red and green pigments. Another surprise is awaiting them when they hear that the yellow and blue of the spectrum make _white_, for all their experience with paints goes to prove that yellow and blue unite to form green. Attention is called to this difference between the mixture of colored light and of colored pigments, not with the idea of explaining it here, but to emphasize their difference; for in the next chapter we shall describe the practical making of a color sphere with pigments, which would be quite impractical, could we have only the colors of the spectrum to work with. See Appendix to preceding chapter.]

(90) A similar arrangement of slits and mirrors for the green and violet-blue proves that they unite to make blue, while a third experiment shows that the red and violet-blue can unite to make purple.

So yellow, blue-green, and purple are called secondary hues because they result from the mixture of the three primaries, red, green, and violet-blue.

In comparing these two color lists, we see that the ”indigo” and ”orange” of Sir Isaac Newton have been discarded. Both are indefinite, and refer to variable products of the vegetable kingdom. Violet is also borrowed from the same kingdom; and, in order to describe a violet, we say it is a purple violet or blue violet, as the case may be, just as we describe an orange as a red orange or a yellow orange. Their color difference is not expressed by the terms ”orange” or ”violet,” but by the words ”red,” ”yellow,” ”blue,” or ”purple,” all of which are true color names and arouse an unmixed color image.

(91) In the nursery a child learns to use the simple color names red, yellow, green, blue, and purple. When familiarity with the color sphere makes him relate them to each other and place them between black and white by their degree of light and strength, there will be no occasion to revert to vegetables, animals, minerals, or the ever-varying hues of sea and sky to express his color sensations.

(92) Another experiment accentuates the difference between spectral and pigment color. When the spectrum is spread on the screen by the use of a prism, and a second prism is placed inverted beyond the first, it regathers the dispersed rays back into their original beam, making a white spot on the floor. This proves that all the colored rays of light combine to balance each other in whiteness. But if pigments which are the closest possible imitation of these hues are united on a painter's palette, either by the brush or the knife, they _make gray, and not white_.

(93) This is another ill.u.s.tration of the behavior of pigments, for, instead of uniting to form white, they form gray, which is a darkened or impure form of white; and, lest this should be attributed to a chemical reaction between the various matters that serve as pigments, the experiment can be carried out without allowing one pigment to touch another by using Maxwell discs, as will be shown in the next chapter.

(94) Before leaving these prismatic colors, let us study them in the light of what has already been learned of color dimensions. Not only do they present different values, but also different chromas. Their values range from darkness at each end, where red and purple become visible, to a brightness in the greenish yellow, which is almost white. So on the color tree described in Chapter II., paragraph 34, yellow has the highest branch, green is lower, red is below the middle, with blue and purple lower down, near black.

[Ill.u.s.tration: Fig. 15.]

(95) Then in chroma they range from the powerful stimulation of the red to the soothing purple, with green occupying an intermediate step. This is also given on the color tree by the length of its branches.