Part 8 (1/2)

(earth knowledge or geology in its etymological sense), that is to say, a general knowledge of the earth, and what is on it and in it and about it. If anyone who has experience of the ways of young children will call to mind their questions, he will find that so far as they can be put in any scientific category, they will come under this head of 'Erdkunde.' The child asks, 'What is the moon, and why does it s.h.i.+ne?' 'What is this water, and where does it run?' 'What is the wind?' 'What makes these waves in the sea?' 'Where does this animal live, and what is the use of that plant?' And if not snubbed and stunted by being told not to ask foolish questions, there is no limit to the intellectual craving of a young child; nor any bounds to the slow but solid accretion of knowledge and development of the thinking faculty in this way.

To all such questions, answers which are necessarily incomplete, though true as far as they go, may be given by any teacher whose ideas represent real knowledge and not mere book learning: and a panoramic view of nature, accompanied by a strong infusion of the scientific habit of mind, may thus be placed within the reach of every child of nine or ten.”

In 1880 Huxley, in a.s.sociation with Professor Roscoe, the chemist, and Professor Balfour Stewart, the physicist, took a great practical step toward securing the widest possible extension of elementary knowledge in science. They became general editors, for the English publis.h.i.+ng house of Macmillan, of a series of ”Science Primers.” These were written in simple language, suitable for those with no preliminary knowledge of science, but were the work of the chief authorities in the leading branches of science. They were published at what was then the phenomenally cheap price of a s.h.i.+lling, and they sold in almost incredible numbers. Huxley himself wrote the introductory volume to this great series of tracts, taking for his subject the simplest and most natural phenomena of the world and the simplest chains of cause and effect that can be observed around us. The keynote of the little book was that knowledge of nature could be gained only by observation and experiment, and that for these the ordinary things in the world around us provided ample material. A few years later he wrote a more advanced volume on the same subject. He had now found an English name for the German _Erdkunde_, and his book on _Physiography_ was simply an account of the leading things and forces of nature. A traveller set down in a foreign land will at once get into difficulties unless he has provided himself with a guide to the geography, the manners and customs, and the regulations of the country in which he finds himself.

Huxley's aim was to provide a similar guide to nature; an outline of elementary knowledge of the world into which we all come as strangers.

He wrote of force and energy, of the forms of water, of heat and cold, of the atmosphere, of winds and tides and weather, and of the main features of the lives of plants and animals. There was nothing new in what he wrote; he simply took from the chief sciences their leading principles and elementary facts, and set them forth in plain and simple language so that all could read and understand. The novelty was that an attempt should be made to bring these facts within the reach of all. The idea proved extremely infectious; in Europe and America, in many languages and by many authors, Huxley's main lines were followed, with the result that a new branch of education, and almost of science, was created.

The body of man and the processes of life, in the earlier part of the century, were almost as unknown to most people as were the structure of the earth and the great processes of nature. What was known of human anatomy and physiology was contained in ponderous treatises, written in difficult and technical language suitable only for students of medicine and doctors. It was thought to be not only unnecessary but slightly coa.r.s.e for those not in the profession to know anything of the viscera of digestion, circulation, and so forth. Huxley laid low this great superst.i.tion by his _Elementary Lessons in Physiology_, a little volume first published in 1866, which ran through many editions. In it he wrote primarily for teachers and learners in boys' and girls' schools, and selected from the great bulk of knowledge and opinion called human physiology only the important and well-established truths. So successful was he in his selection that, notwithstanding the immense increase in knowledge since he wrote, the book still remains an adequate and useful elementary treatise, and by this time must have given their main knowledge of the human body to hundreds and thousands of readers who otherwise would have remained ignorant.

The books of which we have been writing were addressed to the general public, but, in addition, Huxley wrote several, of which three are specially important, for those students who devote themselves specially to anatomy. _The Crayfish_, his famous volume in the International Scientific Series, has been called by Professor Howes, the a.s.sistant and successor of Huxley at the Royal College of Science, ”probably the best biological treatise ever written.” Many naturalists have written elaborate monographs on single animals: Lyonet worked for years on the willow caterpillar, Strauss Durckheim devoted an even minuter attention to the common c.o.c.kchafer, and the great Boja.n.u.s investigated almost every fibre in the structure of the tortoise. The volumes produced by these anatomists were valuable and memorable, and occupy an honoured place in the library of science, but Huxley's aim was wider and greater. He showed how careful study of one of the commonest and most insignificant of animals leads, step by step, from every-day knowledge to the widest generalisations and the most difficult problems of zoology. He made study of a single creature an introduction to a whole science, and taught students to regard any form of life not merely as a highly complicated and deeply interesting anatomical study, but as a creature that is only one out of an innumerable host of living things, every fibre in its body, every rhythm in its functions proclaiming the degree and nature of its relations.h.i.+p to other animals. R. Louis Stevenson, writing of his native town, tried to give ”a vision of Edinburgh, not as you see her, in the midst of a little neighbourhood, but as a boss upon the round world, with all Europe and the deep sea for her surroundings. For every place is a centre to the earth, whence highways radiate, or s.h.i.+ps set sail for foreign ports; the limit of a parish is not more imaginary than the frontier of an empire.” It is this wider sweep, this attempt to see and to teach not merely the facts about things but the relations of these facts to the similar facts in other things, that makes the difference between the new knowledge and the old. The questions to be asked and answered are not merely, What are the structures in this animal? but, How and why do they come to be what they are? Huxley was a ruthless enemy of the books and teachers which or who made the mere acquisition of details of knowledge their chief object.

”I remember,” he wrote, ”in my youth there were detestable books which ought to have been burned by the hands of the common hangman, for they contained questions and answers to be learned by heart, of this sort, 'What is a horse? The horse is termed _Equus caballus_; belongs to the cla.s.s Mammalia; order, Pachydermata; family, Solidungula.' Was any human being the wiser for learning that magic formula? Was he not more foolish inasmuch as he was deluded into taking words for knowledge?”

Huxley himself admitted his difficulty in remembering apparently meaningless facts, and occasionally aided his memory by inventing for them a humorous significance. Professor Howes relates a story of this kind. While examining the papers of candidates for some examination, Huxley came across one in which the mitral or bicuspid valve of the heart was erroneously described as being placed in the right cavity.

”Poor little beggar,” said Huxley; ”I never could get them myself until I reflected that a bishop could never be in the right.” This insistence on the uselessness of formal knowledge applied only to those who were being taught or who were learning from books or lectures. Of the value and discipline of knowledge of facts gained at first hand from objects themselves either in original investigation or with the aid of books, Huxley had the highest possible opinion. By such a method of work alone he believed it possible to distinguish what we believe on authority from what we have convinced ourselves to be true, and, as we shall see later, he regarded it as the most important duty of a man to have acquired the habit of cla.s.sifying the ma.s.s of ideas in his brain into those which he knew and those which he thought to be true from having read or heard or imagined them.

The two other of the three great treatises for anatomical students are the _Manual of the Anatomy of Vertebrated Animals_, published in 1871, and the _Manual of the Anatomy of Invertebrated Animals_, published in 1877. Of these two volumes it is sufficient to say that they formed the chief introduction to the study of animal zoology for many years, and that a large number of the best-known zoologists of the end of this century received from them their first instruction in the science. As text-books they have been superseded lately by larger volumes in which there is found more s.p.a.ce for some of the recent advances in knowledge, especially comparative embryology, and the more intricate knowledge of the structure of the soft parts of marine invertebrates made possible by the newer and more successful methods of preserving delicate tissues. Just before Huxley ceased his regular work as a teacher at the Royal College of Science, there arrived a series of marine embryos, beautifully preserved and prepared for microscopic work by the zoologists at the International Zoological Station at Naples. Huxley is reported to have exclaimed at their beauty, and to have said: ”You young men cannot realise your advantages; you have brought to you for study at your leisure in London, creatures that I had to lash my microscope to the mast to get a glimpse of.” Huxley's books were written for students with fewer advantages, and, naturally, laid more stress on the harder skeletal parts and such structures as could be more easily preserved; but with this inevitable limitation they still serve as luminous and comprehensive guides to the subjects of which they treat. There is no doubt but that if he had been a younger man when the new technical methods made their appearance, he would have adopted them and their results in his volumes. One of the first great pieces of work which utilised methods more like those now used in all laboratories than those employed during the greater part of Huxley's life as a teacher was the cla.s.sical investigation by Van Beneden into the changes in the egg of Ascaris which accompany the process of fertilisation. When Huxley read the memoir he exclaimed, ”All this by the use of glacial acetic acid--is it possible!” At once, Professor Howes relates, he repeated the whole investigation himself, and, when satisfied, declared that the ”history of the histological investigation of the future would be the history of its methods.” Not only have the chemical substances used in preparing tissues for examination greatly increased since Huxley's time as an active worker, but a very important method of investigation has come into general use. In Huxley's time tissues or animals too large or too opaque to be examined microscopically as whole structures were either teased by needles or were cut with a razor by hand into comparatively thick slices. The process of cutting, however practised the operator, was tedious and uncertain, and it was almost impossible to cut a piece of tissue into a series of thin slices without losing or destroying considerable portions. Microtomes, with various accessory mechanical appliances, have now been invented, and by means of these not only are slices of great tenuity made with ease, but there is little difficulty in cutting the most delicate organism into a ribbon of consecutive slices. Such new methods have made almost a revolution in the study of zoology, particularly of the lower forms of life and of the embryonic stages of higher animals, and books written before these methods became common have naturally been superseded.

Huxley did far more for the teaching of science than the preparation of books, however useful these were. He was the practical inventor of the laboratory system of teaching zoological science, and all over the world the methods invented by him have been adopted in university laboratories and technical schools. He had always declared that since zoology was a physical science, the method of studying it must needs be a.n.a.logous to that which is followed in other physical sciences. If a man wishes to be a chemist, it is necessary not only that he should read chemical books and attend chemical lectures, but that he should actually perform the fundamental experiments in the laboratory for himself, and thus learn exactly what the words which he reads in his books and hears from his teachers, mean. ”If you want a man to be a tea-merchant, you don't tell him to read books about China or about tea, but you put him into a tea-merchant's office where he has the handling, the smelling, and the tasting of tea. Without the sort of knowledge which can be gained only in this practical way, his exploits as a tea-merchant will soon come to a bankrupt termination.” The great and obvious difficulty in the practical teaching of biology appeared to be the immense number of different kinds of animals and plants in existence. A human life would not suffice for the examination of a hundredth part of these. Huxley met the difficulty by the ”type”

system.

”There are certainly more than 100,000 species of insects, and yet anyone who knows one insect, if a properly chosen one, will be able to have a fair conception of the structure of the whole.

I do not mean to say he will know that structure thoroughly, or as well as is desirable that he should know it; but he will have enough real knowledge to enable him to understand what he reads, to have genuine images in his mind of these structures which become so variously modified in all the forms of insects he has not seen. In fact, there are such things as types of form among animals and vegetables, and for the purpose of getting a definite knowledge of what const.i.tutes the leading modifications of animal and plant life, it is not needful to examine more than a comparatively small number of animals and plants.”

The type system in itself was not absolutely new. Rolleston, the Linacre professor at Oxford, in his _Forms of Animal Life_ had devised the method of teaching comparative anatomy by the study of a graded series of animals. But his method depended on the existence of a series of dissections and preparations made by a skilled craftsman; the tradition of teaching by authority instead of by investigation was maintained, although the authority of books and lectures was aided by museum specimens in gla.s.s bottles, the actual basis of the book being a series of dissections prepared by Mr. Charles Robertson, Rolleston's laboratory a.s.sistant, for the great International Exhibition of 1861.

The authorities of Huxley's students were to be found in nature itself. The green sc.u.m from the nearest gutter, a handful of weed from a pond, a bean-plant, some fresh-water mud, a frog, and a pigeon were the ultimate authorities of his course. His students were taught how to observe them, and how to draw and record their observations.

However familiar the objects, each student had to verify every fact afresh for himself. The business of the teacher was explanation of the methods of verification, insistence on the accomplishment of verification. It was a training in the immemorial att.i.tude of the scientific mind, codified by Huxley and made an integral part in national education.

As a matter of fact it was comparatively late in his life as a teacher that Huxley had complete opportunity for putting into practice his scheme for the laboratory teaching of biology. In 1854 there was no laboratory attached to the Natural History Department of the School of Mines. Lectures alone were given, and the only opportunity the student had of any practical acquaintance with the facts was in a short interview with the professor at the lecture table after the lecture.

This condition continued practically to 1872. But a few years before that Huxley and his colleagues got up a kind of p.r.o.nunciamento deploring the existing state of affairs. In his evidence before the Royal Commission of 1870 Huxley said: ”There is a complete want in the School of Mines, as it now exists, of any means of teaching several of the subjects practically. For example, I am set there to teach natural history without a biological laboratory and without the means of shewing a single dissection.” Against strong internal opposition and at considerable pecuniary loss Huxley and some of his colleagues succeeded, in 1872, in getting the School of Mines transferred to South Kensington, where it became the Royal College of Science. For the first course of instruction given in the new buildings, Huxley obtained the aid of Prof. M. Foster, Prof. Rutherford, and Prof. Ray Lankester. The laboratory course originated by Huxley and shaped by him with these three distinguished a.s.sistants became the model of the regular courses given subsequently, and, with various slight modifications, has since been adopted almost universally. Later on, Huxley described it as follows:

”I lecture to a cla.s.s of students daily for about four months and a half, and my cla.s.s have, of course, their text-books; but the essential part of the whole teaching, and that which I regard as really the most important part of it, is a laboratory for practical work, which is simply a room with all the appliances needed for ordinary dissection. We have tables properly arranged in regard to light, microscopes and dissecting instruments, and we work through the structure of a certain number of plants and animals. As, for example, among the plants we take the yeast-plant, a Protococcus, a common mould, a Chara, a fern, and some flowering plant; among animals we examine such things as an Amba, a Vorticella, and a fresh-water polyp. We dissect a starfish, an earthworm, a snail, a squid, and a fresh-water mussel. We examine a lobster and a crayfish, and a black beetle.

We go on to a common skate, a codfish, a frog, a tortoise, a pigeon, and a rabbit, and that takes us about all the time we have to give. The purpose of this course is not to make skilled dissectors, but to give every student a clear and definite conception, by means of sense images, of the characteristic structure of each of the leading modifications of the animal kingdom; and that is perfectly possible by going no further than the length of that list of forms which I have enumerated. If a man knows the structure of the animals I have mentioned, he has a clear and exact, however limited apprehension of the essential features of the organization of all those great divisions of the animal and vegetable kingdoms to which the forms I have mentioned severally belong. And it then becomes possible to him to read with profit; because every time he meets with the name of a structure, he has a definite image in his mind of what the name means in the particular creature he is reading about, and therefore the reading is not mere reading. It is not mere repet.i.tion of words; but every term employed in the description, we will say of a horse, or of an elephant, will call up the image of the things he had seen in the rabbit, and he is able to form a distinct conception of that which he has not seen, as a modification of that which he has seen.”

Huxley himself was originally a medical man; all through his life he was chiefly interested in the biological sciences which underlie a scientific practice of medicine, and as teacher and examiner he had much to do with the shaping of medical education in London. Acting in various public capacities, as a member of commissions dealing with medical education, or as a witness before them, in magazine articles and in public speeches he made many contributions to the problems to be faced in medical education. Some of these related to the conditions peculiar to medical training in London. In the greatest city of the world there was during Huxley's life and there is still nothing comparable with the great universities of Europe and America, of Scotland and Ireland. Some dozen hospitals, supported partly by endowments, partly by charities, attempt each to maintain a complete, independent medical school. As the requirements of medical education in staff, laboratories, and general equipment has advanced, these hospitals have made heroic efforts to advance with them.

Notwithstanding the zeal and public spirit of the staff and managers of the hospitals, this want of system has naturally resulted in a multiplication of inefficient inst.i.tutions and a number of makes.h.i.+ft arrangements. Huxley repeatedly urged the concentration of all this diffuse effort into a few centres, but this inevitable reform has not yet become possible.

A second important consideration, and one that has a much wider application, relates to the kind of person by whom the scientific sides of medical teaching should be given. Primitively, all the instruction to medical students was given by those actually engaged in the practice of medicine. Huxley was strongly of the opinion that the teachers of anatomy, physiology, chemistry, and so forth, should be specialists devoted to these subjects for life, and not merely surgeons and physicians who engaged in teaching until their practice grew sufficiently to monopolise their attention.

”I get every year,” he said, ”the elaborate reports of Henle and Meissner--volumes of I suppose 400 pages altogether--and they consist merely of abstracts of the memoirs and works which have been written on Anatomy and Physiology--only abstracts of them.

How is a man to keep up his acquaintance with all that is doing in the physiological world--in a world advancing with enormous strides every day and every hour--if he has to be distracted with the cares of practice?”

There would always be found men, he declared, who would make the choice between the wealth which may come by successful practice and a modest competency, when that modest competency was to be combined with a scientific career and the means of advancing knowledge. It was to those who made the latter choice that he would entrust the teaching of the sciences underlying medicine; partly because from the mere mechanical reason of time these men would be better able to keep pace with the most recent advances in knowledge, and partly because their teaching would be stimulated by their own work in advancing knowledge.

In this great matter the world is rapidly advancing towards the standard of Huxley; as each new appointment is made it becomes more and more probable that the man chosen will be a teacher and investigator rather than a pract.i.tioner.