Part 5 (1/2)

The blast produced by the atomic bomb has already been stated to be approximately equivalent to that of 20,000 tons of T.N.T. Given this figure, one may calculate the expected peak pressures in the air, at various distances from the center of the explosion, which occurred following detonation of the bomb. The peak pressures which were calculated before the bombs were dropped agreed very closely with those which were actually experienced in the cities during the attack as computed by Allied experts in a number of ingenious ways after the occupation of j.a.pan.

The blast of pressure from the atomic bombs differed from that of ordinary high explosive bombs in three main ways:

A. Downward thrust. Because the explosions were well up in the air, much of the damage resulted from a downward pressure. This pressure of course most largely effected flat roofs. Some telegraph and other poles immediately below the explosion remained upright while those at greater distances from the center of damage, being more largely exposed to a horizontal thrust from the blast pressure waves, were overturned or tilted. Trees underneath the explosion remained upright but had their branches broken downward.

B. Ma.s.s distortion of buildings. An ordinary bomb can damage only a part of a large building, which may then collapse further under the action of gravity. But the blast wave from an atomic bomb is so large that it can engulf whole buildings, no matter how great their size, pus.h.i.+ng them over as though a giant hand had given them a shove.

C. Long duration of the positive pressure pulse and consequent small effect of the negative pressure, or suction, phase. In any explosion, the positive pressure exerted by the blast lasts for a definite period of time (usually a small fraction of a second) and is then followed by a somewhat longer period of negative pressure, or suction. The negative pressure is always much weaker than the positive, but in ordinary explosions the short duration of the positive pulse results in many structures not having time to fail in that phase, while they are able to fail under the more extended, though weaker, negative pressure.

But the duration of the positive pulse is approximately proportional to the 1/3 power of the size of the explosive charge. Thus, if the relation held true throughout the range in question, a 10-ton T.N.T.

explosion would have a positive pulse only about 1/14th as long as that of a 20,000-ton explosion. Consequently, the atomic explosions had positive pulses so much longer then those of ordinary explosives that nearly all failures probably occurred during this phase, and very little damage could be attributed to the suction which followed.

One other interesting feature was the combination of flash ignition and comparative slow pressure wave. Some objects, such as thin, dry wooden slats, were ignited by the radiated flash heat, and then their fires were blown out some time later (depending on their distance from X) by the pressure blast which followed the flash radiation.

CALCULATIONS OF THE PEAK PRESSURE OF THE BLAST WAVE

Several ingenious methods were used by the various investigators to determine, upon visiting the wrecked cities, what had actually been the peak pressures exerted by the atomic blasts. These pressures were computed for various distances from X, and curves were then plotted which were checked against the theoretical predictions of what the pressures would be. A further check was afforded from the readings obtained by the measuring instruments which were dropped by parachute at each atomic attack. The peak pressure figures gave a direct clue to the equivalent T.N.T. tonnage of the atomic bombs, since the pressures developed by any given amount of T.N.T. can be calculated easily.

One of the simplest methods of estimating the peak pressure is from crus.h.i.+ng of oil drums, gasoline cans, or any other empty thin metal vessel with a small opening. The a.s.sumption made is that the blast wave pressure comes on instantaneously, the resulting pressure on the can is more than the case can withstand, and the walls collapse inward.

The air inside is compressed adiabatically to such a point that the pressure inside is less by a certain amount than the pressure outside, this amount being the pressure difference outside and in that the walls can stand in their crumpled condition. The uncertainties involved are, first, that some air rushes in through any opening that the can may have, and thus helps to build up the pressure inside; and, second, that as the pressure outside falls, the air inside cannot escape sufficiently fast to avoid the walls of the can being blown out again to some extent. These uncertainties are such that estimates of pressure based on this method are on the low side, i.e., they are underestimated.

Another method of calculating the peak-pressure is through the bending of steel flagpoles, or lightning conductors, away from the explosion.

It is possible to calculate the drag on a pole or rod in an airstream of a certain density and velocity; by connecting this drag with the strength of the pole in question, a determination of the pressure wave may be obtained.

Still another method of estimating the peak pressure is through the overturning of memorial stones, of which there are a great quant.i.ty in j.a.pan. The dimensions of the stones can be used along with known data on the pressure exerted by wind against flat surfaces, to calculate the desired figure.

LONG RANGE BLAST DAMAGE

There was no consistency in the long range blast damage. Observers often thought that they had found the limit, and then 2,000 feet farther away would find further evidence of damage.

The most impressive long range damage was the collapse of some of the barracks sheds at Kamigo, 23,000 feet south of X in Nagasaki. It was remarkable to see some of the buildings intact to the last details, including the roof and even the windows, and yet next to them a similar building collapsed to ground level.

The limiting radius for severe displacement of roof tiles in Nagasaki was about 10,000 feet although isolated cases were found up to 16,000 feet. In Hiros.h.i.+ma the general limiting radius was about 8,000 feet; however, even at a distance of 26,000 feet from X in Hiros.h.i.+ma, some tiles were displaced.

At Mogi, 7 miles from X in Nagasaki, over steep hills over 600 feet high, about 10% of the gla.s.s came out. In nearer, sequestered localities only 4 miles from X, no damage of any kind was caused. An interesting effect was noted at Mogi; eyewitnesses said that they thought a raid was being made on the place; one big flash was seen, then a loud roar, followed at several second intervals by half a dozen other loud reports, from all directions. These successive reports were obviously reflections from the hills surrounding Mogi.

GROUND SHOCK

The ground shock in most cities was very light. Water pipes still carried water and where leaks were visible they were mainly above ground. Virtually all of the damage to underground utilities was caused by the collapse of buildings rather than by any direct exertion of the blast pressure. This fact of course resulted from the bombs'

having been exploded high in the air.

s.h.i.+ELDING, OR SCREENING FROM BLAST

In any explosion, a certain amount of protection from blast may be gained by having any large and substantial object between the protected object and the center of the explosion. This s.h.i.+elding effect was noticeable in the atomic explosions, just as in ordinary cases, although the magnitude of the explosions and the fact that they occurred at a considerable height in the air caused marked differences from the s.h.i.+elding which would have characterized ordinary bomb explosions.

The outstanding example of s.h.i.+elding was that afforded by the hills in the city of Nagasaki; it was the s.h.i.+elding of these hills which resulted in the smaller area of devastation in Nagasaki despite the fact that the bomb used there was not less powerful. The hills gave effective s.h.i.+elding only at such distances from the center of explosion that the blast pressure was becoming critical--that is, was only barely sufficient to cause collapse--for the structure. Houses built in ravines in Nagasaki pointing well away from the center of the explosion survived without damage, but others at similar distances in ravines pointing toward the center of explosion were greatly damaged. In the north of Nagasaki there was a small hamlet about 8,000 feet from the center of explosion; one could see a distinctive variation in the intensity of damage across the hamlet, corresponding with the shadows thrown by a sharp hill.