Part 7 (2/2)
The gas-meter is made by the Dansk Maalerfabrik in Copenhagen, and is of the type used by Bohr in many of his investigations. It has the advantage of showing the water-level, and the volume may be read directly. The dial is graduated so as to be read within 50 cubic centimeters.
The Elster meter formerly used for this purpose was much smaller than the meter of the Dansk Maalerfabrik we are now using. The volume of water was much smaller and consequently the temperature fluctuations much more rapid. While the residual a.n.a.lyses for which the meter is used are of value in interpolating the results for the long experiments, and consequently errors in the meter would be more or less constant, affecting all results alike, we have nevertheless carefully calibrated the meter by means of the method of admitting oxygen from a weighed cylinder.[23] The test showed that the meter measured 1.4 per cent too much, and consequently this correction must be applied to all measurements made with it.
CALCULATION OF RESULTS.
With an apparatus as elaborate as is the respiration calorimeter and its accessories, the calculation of results presents many difficulties, but the experience of the past few years has enabled us to lessen materially the intricacies of the calculations formerly thought necessary.
The total amount of water-vapor leaving the chamber is determined by noting the increase in weight of the first sulphuric-acid vessel in the absorber system. This vessel is weighed with a counterpoise and hence only the increment in weight is recorded. A slight correction may be necessary here, as frequently the absorber is considerably warmer at the end of the period than at the beginning and if weighed while warm there may be an error of 0.1 to 0.2 gram. If the absorbers are weighed at the same temperature at the beginning and end, this correction is avoided.
The amount of carbon dioxide absorbed from the ventilating air-current is found by noting the changes in weight of the potash-lime can and the last sulphuric-acid vessel. As shown by the weights of this latter vessel, it is very rare that sufficient water is carried over from the potash-lime to the sulphuric acid to cause a perceptible change in temperature, and no temperature corrections are necessary. It may occasionally happen that the amount of carbon dioxide absorbed is actually somewhat less than the amount of water-vapor abstracted from the reagent by the dry air-current as it pa.s.ses through the can. The conditions will then be such that there will be a loss in weight of the potash-lime can and a large gain in weight of the sulphuric-acid vessel.
Obviously, the algebraic sum of these amounts will give the true weight of the carbon dioxide absorbed.
The amount of oxygen admitted is approximately measured by noting the loss in weight of the oxygen cylinder. Since, however, in admitting the oxygen from the cylinder there is a simultaneous admission of a small amount of nitrogen, a correction is necessary. This correction can be computed either by the elaborate formulas described in the publication of At.w.a.ter and Benedict[24] or by the more abbreviated method of calculation which has been used very successfully in all short experiments in this laboratory. In either case it is necessary to know the approximate percentage of nitrogen in the oxygen.
a.n.a.lYSIS OF OXYGEN.
With the modified method of computation discussed in detail on page 88 it is seen that such exceedingly exact a.n.a.lyses of oxygen as were formerly made are unnecessary, and further calculation is consequently very simple if we know the percentage of nitrogen to within a fraction of 1 per cent. We have used a Haldane gas-a.n.a.lysis apparatus for a.n.a.lyzing the oxygen, although the construction of the apparatus is such that this presents some little difficulty. It is necessary, for example, to accurately measure about 16 cubic centimeters of pure nitrogen, pa.s.s it into the pota.s.sium pyrogallate pipette, and then (having taken a definite sample of oxygen) gradually absorb the oxygen in the pota.s.sium pyrogallate and measure subsequently the acc.u.mulated nitrogen. The a.n.a.lysis is tedious and not particularly satisfactory.
Having checked the manufacturer's a.n.a.lysis of a number of cylinders of oxygen and invariably found them to agree with our results, we are at present using the manufacturer's guaranteed a.n.a.lysis. If there was a very considerable error in the gas a.n.a.lysis, amounting even to 1 per cent, the results during short experiments would hardly be affected.
ADVANTAGE OF A CONSTANT-TEMPERATURE ROOM AND TEMPERATURE CONTROL.
A careful inspection of the elaborate method of calculation required for use with the calorimeter formerly at Wesleyan University shows that a large proportion of it can be eliminated owing to the fact that we are here able to work in a room of constant temperature. It has been pointed out that the fluctuations in the temperature of the gas-meter affect not only the volume of the gas pa.s.sing through the meter, but likewise the tension of aqueous vapor. The corrections formerly made for temperature on the barometer are now unnecessary; finally (and perhaps still more important) it is no longer necessary to subdivide the volume of the system into portions of air existing under different temperatures, depending upon whether they were in the upper or lower part of the laboratory. In other words, the temperature of the whole ventilating circuit and chamber, with the single exception of the air above the acid in the first sulphuric-acid absorber, may be said to be constant. During rest experiments this a.s.sumption can be made without introducing any material error, but during work experiments it is highly probable that some consideration must be given to the possibility of the development of a considerable temperature rise in the air of the potash-lime absorbers, due to the reaction between the carbon dioxide and the solid absorbent. It is thus apparent that the constant-temperature conditions maintained in the calorimeter laboratory not only facilitate calorimetric measurements, but also simplify considerably the elaborate calculations of the respiratory exchange formerly required.
VARIATIONS IN THE APPARENT VOLUME OF AIR.
In the earlier form of apparatus the largest variation in the apparent volume of air was due to the fluctuations in the height of the large rubber diaphragms used on the tension equalizer. In the present form of apparatus there is but one rubber diaphragm, and this is small, containing not more than 3 to 4 liters as compared to about 30 liters in the earlier double rubber diaphragms. As now arranged, all fluctuations due to the varying positions of the tension-equalizer are eliminated as each experimental period is ended with the diaphragm in exactly the same position, _i. e._, filled to a definite tension.
In its pa.s.sage through the purifiers the air is subjected to more or less pressure, and it is obvious that if these absorbers were coupled to the ventilating system under atmospheric pressure, and then air caused to pa.s.s through them, there would be compression in a portion of the purifier system. Thus there would be a contraction in the volume, and air thus compressed would subsequently be released into the open air when the absorbers were uncoupled. The method of testing the system outlined on page 100 equalizes this error, however, in that the system is tested under the same pressure used during an actual experiment, and hence between the surface of the sulphuric acid in the first porcelain vessel and the sulphuric acid in the second porcelain vessel there is a confined volume of air which at the beginning of an experimental period is under identically the same pressure as it is at the end. There is, then, no correction necessary for the rejection of air with the changes in the absorber system.
CHANGES IN VOLUME DUE TO THE ABSORPTION OF WATER AND CARBON DIOXIDE.
As the water-vapor is absorbed by the sulphuric acid, there is a slight increase in volume of the acid. This naturally results in the diminution of the apparent volume of air and likewise again affects the amount of oxygen admitted to produce constant apparent volume at the end of each experimental period. The amount of increase which thus takes place for each experimental period is very small. It has been found that an increase in weight of 25 grams of water-vapor results in an increase in volume of the acid of some 15 cubic centimeters. Formerly this correction was made, but it is now deemed unnecessary and unwise to introduce a refinement that is hardly justified in other parts of the apparatus. Similarly, there is theoretically at least an increase in volume of the potash-lime by reason of the absorption of the carbon dioxide. This was formerly taken into consideration, but the correction is no longer applied.
RESPIRATORY LOSS.
With experiments on man, there is a constant transformation of solid body material into gaseous products which are carried out into the air-current and absorbed. Particularly where no food is taken, this solid material becomes smaller in volume and consequently additional oxygen is required to take the place of the decrease in volume of body substance. But this so-called respiratory loss is more theoretical than practical in importance, and in the experiments made at present the correction is not considered necessary.
CALCULATION OF THE VOLUME OF AIR RESIDUAL IN THE CHAMBER.
The ventilating air-circuit may be said to consist of several portions of air. The largest portion is that in the respiration chamber itself and consists of air containing oxygen, nitrogen, carbon dioxide, and water-vapor. This air is a.s.sumed to have the same composition up to the moment when it begins to bubble through the sulphuric acid in the first acid-absorber. The air in this absorber above the acid, amounting to about 14 liters, has a different composition in that the water-vapor has been completely removed. The same 14 liters of air may then be said to contain carbon dioxide, nitrogen, and oxygen. This composition is immediately disturbed the moment the air enters the potash-lime can, when the carbon dioxide is absorbed and the volume of air in the last sulphuric-acid absorber, in the sodium-bicarbonate can, and in the piping back to the calorimeter may be said to consist only of nitrogen and oxygen. The air then between the surface of the sulphuric acid in the last porcelain absorber and the point where the ingoing air is delivered to the calorimeter consists of air free from carbon dioxide and free from water. Formerly this section also included the tension-equalizer, but very recently we have in both of the calorimeters attached the tension-equalizer directly to the respiration chamber.
In the Middletown apparatus, these portions of air of varying composition were likewise subject to considerable variations in temperature, in that the temperature of the laboratory often differed materially from that of the calorimeter chamber itself, especially as regards the apparatus in the upper part of the laboratory room. It is important, however, to know the total volume of the air inclosed in the whole system. This is obtained by direct measurement. The cubic contents of the calorimeter has been carefully measured and computed; the volumes of air in the pipes, valve systems, absorbing vessels, and tension-equalizer have been computed from dimensions, and it has been found that the total volume in the apparatus is, deducting the volume of the permanent fixtures in the calorimeter, 1,347 liters. The corresponding volume for the bed calorimeter is 875. These values are altered by the subject and extra articles taken into the chamber.
From a series of careful measurements and special tests the following apparent volumes for different parts of the system have been calculated:
<script>