Part 4 (2/2)
THE HEAT OF VAPORIZATION OF WATER.
During experiments with man not all the heat leaves the body by radiation and conduction, since a part is required to vaporize the water from the skin and lungs. An accurate measurement of the heat production by man therefore required a knowledge of the amount of heat thus vaporized. One of the great difficulties in the numerous forms of calorimeters that have been used heretofore with man is that only that portion of heat measured by direct radiation or conduction has been measured and the difficulties attending the determination of water vaporized have vitiated correspondingly the estimates of the heat production. Fortunately, with this apparatus the determinations of water are very exact, and since the amount of water vaporized inside the chamber is known it is possible to compute the heat required to vaporize this water by knowing the heat of vaporization of water.
Since the earlier reports describing the first form of calorimeters were written, there has appeared a research by one of our former a.s.sociates, Dr. A. W. Smith[11] who, recognizing the importance of knowing exactly the heat of vaporization of water at 20, has made this a special object of investigation. When connected with our laboratory a number of experiments were made by Doctors Smith and Benedict in an attempt to determine the heat of vaporization of water directly in a large calorimeter; but for lack of time and pressure of other experimental work it was impossible to complete the investigation. Subsequently Dr.
Smith has carried out the experiments with the accuracy of exact physical measurements and has given us a very valuable series of observations.
Using the method of expressing the heat of vaporization in electrical units, Smith concludes that the heat of vaporization of water between 14 and 40 is given by the formula
L (in joules) = 2502.5 - 2.43T
and states that the ”probable error” of values computed from this formula is 0.5 joule. The results are expressed in international joules, that is, in terms of the international ohm and 1.43400 for the E.M.F. of the Clark cell at 15 C., and a.s.suming that the mean calorie is equivalent to 4.1877 international joules,[12] the formula reads
L (in mean calories) = 597.44 - 0.580T
With this formula Smith calculates that at 15 the heat of vaporization of water is equal to 588.73 calories; at 20, 585.84 calories; at 25, 582.93 calories; at 30, 580.04 calories;[13] and at 35, 577.12 calories. In all of the calculations in the researches herewith we have used the value found by Smith as 586 calories at 20. Inasmuch as all of our records are in kilo-calories, we multiply the weight of water by the factor 0.586 to obtain the heat of vaporization.
THE BED CALORIMETER.
The chair calorimeter was designed for experiments to last not more than 6 to 8 hours, as a person can not remain comfortably seated in a chair much longer than this time. For longer experiments (experiments during the night and particularly for bed-ridden patients) a type of calorimeter which permits the introduction of a couch or bed has been devised. This calorimeter has been built, tested, and used in a number of experiments with men and women. The general shape of the chamber is given in fig. 26. The principles involved in the construction of the chair calorimeter are here applied, _i. e._, the use of a structural-steel framework, inner air-tight copper lining, outer zinc wall, hair-felt insulation, and outer asbestos panels. Inside of the chamber there is a heat-absorbing system suspended from the ceiling, and air thermometers and thermometers for the copper wall are installed at several points. The food-aperture is of the same general type and the furniture here consists simply of a sliding frame upon which is placed an air-mattress. The opening is at the front end of the calorimeter and is closed by two pieces of plate gla.s.s, each well sealed into place by wax after the subject has been placed inside of the chamber. Tubes through the wall opposite the food-aperture are used for the introduction of electrical connections, ingoing and outgoing water, the air-pipes, and connections for the stethoscope, pneumograph, and telephone.
The apparatus rests on four heavy iron legs. Two pieces of channel iron are attached to these legs and the structural framework of the calorimeter chamber rests upon these irons. The method of separating the asbestos outer panels is shown in the diagram. In order to provide light for the chamber, the outer wall in front of the gla.s.s windows is made of gla.s.s rather than asbestos. The front section of the outer casing can be removed easily for the introduction of a patient.
In this chamber it is impossible to weigh the bed and clothing, and hence this calorimeter can not be used for the accurate determination of the moisture vaporized from the lungs and skin of the subject, since here (as in almost every form of respiration chamber) it is absolutely impossible to distinguish between the amount of water vaporized from bed-clothing and that vaporized from the lungs and skin of the subject.
With the chair calorimeter, the weighing arrangements make it possible to weigh the chair, clothing, etc., and thus apportion the total water vaporized between losses from the chair, furniture, and body of the man.
In view of the fact that the water vaporized from the skin and lungs could not be determined, the whole interior of the chamber of the bed calorimeter has been coated with a white enamel paint, which gives it a bright appearance and makes it much more attractive to new patients. An incandescent light placed above the head at the front illuminates the chamber very well, and as a matter of fact the food-aperture is so placed that one can lie on the cot and actually look outdoors through one of the laboratory windows.
[Ill.u.s.tration: FIG. 26.--Cross-section of bed calorimeter, showing part of steel construction, also copper and zinc walls, food-aperture, and wall and air-resistance thermometers. Cross-section of opening, cross-section of panels of insulating asbestos, and supports of calorimeter itself are also indicated.]
Special precaution was taken with this calorimeter to make it as comfortable and as attractive as possible to new and possibly apprehensive patients. The painting of the walls unquestionably results in a condensation of more or less moisture, for the paint certainly absorbs more moisture than does the metallic surface of the copper. The chief value of the determination of the water vaporized inside of the chamber during an experiment lies, however, not in a study of the vaporization of water as such, but in the fact that a certain amount of heat is required to vaporize the water and obviously an accurate measure of the heat production must involve a measure of the amount of water vaporized. So far as the measurement of heat is concerned, it is immaterial whether the water is vaporized from the lungs or skin of the subject or the clothing, bedding, or walls of the chamber; since for every gram of water vaporized inside of the chamber, from whatever source, 0.586 calorie of heat must have been absorbed.
The apparatus as perfected is very sensitive. The sojourn in the chamber is not uncomfortable; as a matter of fact, in an experiment made during January, 1909, the subject remained inside of the chamber for 30 hours.
With male patients no difficulty is experienced in collecting the urine.
No provision is made for defecation, and hence it is our custom in long experiments to empty the lower bowel with an enema and thus defer as long as possible the necessity for defecation. With none of the experiments thus far made have we experienced any difficulty in having to remove the patient because of necessity to defecate in the cramped quarters. It is highly probable that, with the majority of sick patients, experiments will not extend for more than 8 or 10 hours, and consequently the apparatus as designed should furnish most satisfactory results.
In testing the apparatus by the electrical-check method, it has been found to be extremely accurate. When the test has been made with burning alcohol, as described beyond, it has been found that the large amount of moisture apparently retained by the white enamel paint on the walls vitiates the determination of water for several hours after the experiment begins, and only after several hours of continuous ventilating is the moisture content of the air brought down to a low enough point to establish equilibrium between the moisture condensed on the surface and the moisture in the air and thus have the measured amount of moisture in the sulphuric acid vessels equal the amount of moisture formed by the burning of alcohol. Hence in practically all of the alcohol-check experiments, especially of short duration, with this calorimeter, the values for water are invariably somewhat too high. A comparison of the alcohol-check experiments made with the bed and chair calorimeters gives an interesting light upon the power of paint to absorb moisture and emphasizes again the necessity of avoiding the use of material of a hygroscopic nature in the interior of an apparatus in which accurate moisture determinations from the body are to be made.
The details of the bed calorimeter are better shown in fig. 4. The opening at the front is here removed and the wooden track upon which the frame, supporting the cot, slides is clearly shown. The tension equalizer (see page 71) partly distended is shown connected to the ingoing air-pipe, and on the top of the calorimeter connected to the tension equalizer is a Sonden manometer. On the floor at the right is seen the resistance coil used for electrical tests (see page 50). A number of connections inside the chamber at the left are made with electric wires or with rubber tubing. Of the five connections appearing through the opening, reading from left to right, we have, first, the rubber connection with the pneumograph, then the tubing for connection with the stethoscope, then the electric-resistance thermometer, the telephone, and finally a push b.u.t.ton for bell call. The connections for the pneumograph and stethoscope are made with the instruments outside on the table at the left of the bed calorimeter.
MEASUREMENTS OF BODY-TEMPERATURE.
While it is possible to control arbitrarily the temperature of the calorimeter by increasing or decreasing the amount of heat brought away, and thus compensate exactly for the heat eliminated by the subject, the hydrothermal equivalent of the system itself being about 20 calories--on the other hand the body of the subject may undergo marked changes in temperature and thus influence the measurement of the heat production to a noticeable degree; for if heat is lost from the body by a fall of body-temperature or stored as indicated by a rise in temperature, obviously the heat produced during the given period will not equal that eliminated and measured by the water-current and by the latent heat of water vaporized. In order to make accurate measurements, therefore, of the heat-production as distinguished from the heat elimination, we should know with great accuracy the hydrothermal equivalent of the body and changes in body temperature. The most satisfactory method at present known of determining the hydrothermal equivalent of the body is to a.s.sume the specific heat of the body as 0.83.[14] This factor will of course vary considerably with the weight of body material and the proportion of fat, water, and muscular tissue present therein, but for general purposes nothing better can at present be employed. From the weight of the subject and this factor the hydrothermal equivalent of the body can be calculated. It remains to determine, then, with great exactness the body temperature.
<script>