Part 2 (1/2)

As can be seen from these drawings the whole construction of the apparatus is more or less of the refrigerator type, _i. e._, there is little opportunity for radiation or conduction of heat. Such a construction could be multiplied a number of times, giving a greater number of insulating walls, and perhaps reducing radiation to the minimum, but for extreme accuracy in calorimetric investigations it is necessary to insure the absence of radiation, and hence we have retained the ingenious device of Rosa, by which an attempt is made arbitrarily to alter the temperature of the zinc wall so that it always follows any fluctuations in the temperature of the copper wall. To this end it is necessary to know _first_ that there is a temperature difference between zinc and copper and, _second_, to have some method for controlling the temperature of the zinc. Leaving for a moment the question of measuring the temperature differences between zinc and copper, we can consider here the methods for controlling the temperature of the zinc wall.

If it is found necessary to warm the zinc wall, a current of electricity is pa.s.sed through the resistance wire W, fig. 12. This wire is maintained approximately in the middle of the air-s.p.a.ce between the zinc wall and hair-felt by winding it around an ordinary porcelain insulator F, held in position by a threaded rod screwed into a bra.s.s disk soldered to the zinc wall. A nut on the end of the threaded rod holds the insulator in position. Much difficulty was had in securing a resistance wire that would at the same time furnish reasonably high resistance and would not crystallize or become brittle and would not rust. At present the best results have been obtained by using enameled manganin wire. The wire used is No. 28 American wire-gage and has resistance of approximately 1.54 ohms per foot. The total amount of wire used in any one circuit is equal to a resistance of approximately 92 ohms. This method of warming the air-s.p.a.ce leaves very little to be desired. It can be instantaneously applied and can be regulated with the greatest ease and with the greatest degree of refinement.

If, on the other hand, it becomes necessary to cool the air-s.p.a.ce next to the zinc and in turn cool the zinc, we must resort to the use of cold water, which is allowed to flow through the pipe C suspended in the air-s.p.a.ce between the zinc and hair-felt at approximately the same distance as is the heating wire. The support of these pipes is accomplished by placing them in bra.s.s hangers G, soldered to the zinc and provided with an opening in which the pipe rests.

In the early experimenting, it was found impracticable to use piping of very small size, as otherwise stoppage as a result of sediment could easily occur. The pipe found best adapted to the purpose was the so-called standard one-eighth inch bra.s.s pipe with an actual internal diameter of 7 millimeters. The opening of a valve allowed cold water to flow through this pipe and the considerable ma.s.s of water pa.s.sing through produced a very noticeable cooling effect. In the attempt to minimize the cooling effect of the ma.s.s of water remaining in the pipe, provision was made to allow water to drain out of this pipe a few moments after the valve was closed by a system of check-valves. In building the new apparatus, use was made of the compressed-air service in the laboratory to remove the large ma.s.s of cold water in the pipe. As soon as the water-valve was closed and the air-c.o.c.k opened, the compressed air blew all of the water out of the tube.

[Ill.u.s.tration: FIG. 13.--Detail of drop-eight feed-valve and arrangement of outside cooling circuit. The water enters at A, and the flow is regulated by the needle-valve at left-hand side. Rate of flow can be seen at end of exit tube just above the union. The water flows out at C and compressed air is admitted at B, regulated by the pet-c.o.c.k.]

The best results have been obtained, however, with an entirely new principle, namely, a few drops of water are continually allowed to pa.s.s into the pipe, together with a steady stream of compressed air. This cold water is forcibly blown through the pipe, thus cooling to an amount regulated by the amount of water admitted. Furthermore, the relatively dry air evaporates some of the water, thereby producing a somewhat greater cooling effect. By adjusting the flow of water through the pipe a continuous cooling effect of mild degree may be obtained. While formerly the air in the s.p.a.ce next the zinc wall was either cooled or heated alternately by opening the water-valve or by pa.s.sing a current through the heating coil, at present it is found much more advantageous to allow a slow flow of air and water through the pipes continuously, thus having the air-s.p.a.ce normally somewhat cooler than is desired. The effect of this cooling, therefore, is then counterbalanced by pa.s.sing an electric current of varying strength through the heating wire. By this manipulation it is unnecessary that the observer manipulate more than one instrument, namely, the rheostat, while formerly he had to manipulate valves, compressed-air c.o.c.ks, and rheostat. The arrangement for providing for the amount of compressed air and water is shown in fig. 13, in which it is seen that a small drop-sight feed-water valve is attached to the pipe C leading into the dead air-s.p.a.ce surrounding the calorimeter chamber. Compressed air enters at B and the amount entering can be regulated by the pet-c.o.c.k. The amount of water admitted is readily observed by the sight feed-valve. When once adjusted this form of apparatus produces a relatively constant cooling effect and facilitates greatly the manipulation of the calorimetric apparatus as a whole.

THE THERMO-ELECTRIC ELEMENTS.

In order to detect differences in temperature between the copper and zinc walls, some system for measuring temperature differences between these walls is essential. For this purpose we have found nothing that is as practical as the system of iron-German-silver thermo-electric elements originally introduced in this type of calorimeter by E. B.

Rosa, of the National Bureau of Standards, formerly professor of physics at Wesleyan University. In these calorimeters the same principle, therefore, has been applied, and it is necessary here only to give the details of such changes in the construction of the elements, their mounting, and their insulation as have been made as a result of experience in constructing these calorimeters. An element consisting of four pairs of junctions is shown in place as T-J in fig. 25.

One ever-present difficulty with the older form of element was the tendency for the German-silver wires to slip out of the slots in which they had been vigorously crowded in the hard maple spool. In thus slipping out of the slots they came in contact with the metal thimble in the zinc wall and thus produced a ground. In constructing the new elements four pairs of iron-German-silver thermal junctions were made on essentially the same plan as that previously described,[6] the only modification being made in the spool. While the ends of the junctions nearest the copper are exposed to the air so as to take up most rapidly the temperature of the copper, it is somewhat difficult to expose the ends of the junctions nearest the zinc and at the same time avoid short-circuiting. The best procedure is to extend the rock maple spool which pa.s.ses clear through the ferule in the zinc wall and cut a wide slot in the spool so as to expose the junctions to the air nearest the ferule. By so doing the danger to the unprotected ends of the junctions is much less. The two lead-wires of German silver can be carried through the end of the spool and thus allow the insulation to be made much more satisfactorily. In these calorimeters free use of these thermal junctions has been made. In the chair calorimeter there are on the top 16 elements consisting of four junctions each, on the rear 18, on the front 8, and on the bottom 13. The distribution of the elements is made with due reference to the direction in which the heat is most directly radiated and conducted from the surface of the body.

While the original iron-German-silver junctions have been retained in two of these calorimeters for the practical reason that a large number of these elements had been constructed beforehand, we believe it will be more advantageous to use the copper-constantin couple, which has a thermo-electric force of 40 microvolts per degree as against the 25 of the iron-German-silver couple. It is planned to install the copper-constantin junctions in the calorimeters now building.

INTERIOR OF THE CALORIMETER.

Since the experiments to be made with this chamber will rarely exceed 6 to 8 hours, there is no provision made for installing a cot bed or other conveniences which would be necessary for experiments of long duration.

Aside from the arm-chair with the foot-rest suspended from the balance, there is practically no furniture inside of the chamber, and a shelf or two, usually attached to the chair, to support bottles for urine and drinking-water bottles, completes the furniture equipment. The construction of the calorimeter is such as to minimize the volume of air surrounding the subject and yet secure sufficient freedom of movement to have him comfortable. A general impression of the arrangement of the pipes, chair, telephone, etc., inside the chamber can be obtained from figs. 7 and 9. The heat-absorber system is attached to rings soldered to the ceiling at different points. The incoming air-pipe is carried to the top of the central dome, while the air is drawn from the calorimeter at a point at the lower front near the position of the feet of the subject.

From this point it is carried through a pipe along the floor and up the rear wall of the calorimeter to the exit.

With the perfect heat insulation obtaining, the heat production of the man would soon raise the temperature to an uncomfortable degree were there no provisions for withdrawing it. It is therefore necessary to cool the chamber and, as has been pointed out, the cooling is accomplished by pa.s.sing a current of cold water through a heat-absorbing apparatus permanently installed in the interior of the chamber. The heat-absorber consists of a continuous copper pipe of 6 millimeters internal diameter and 10 millimeters external diameter. Along this pipe there are soldered a large number of copper disks 5 centimeters in diameter at a distance of 5 millimeters from each other. This increases enormously the area for the absorption of heat. In order to allow the absorber system to be removed, added to, or repaired at any time, it is necessary to insert couplings at several points. This is usually done at corners where the attachment of disks is not practicable. The total length of heat-absorbers is 5.6 meters and a rough calculation shows that the total area of metal for the absorption of heat is 4.7 square meters. The total volume of water in the absorbers is 254 cubic centimeters.

It has been found advantageous to place a simple apparatus to mix the water in the water-cooling circuit at a point just before the water leaves the chamber. This water-mixer consists of a 15-centimeter length of standard 1-inch pipe with a cap at each end. Through each of these caps there is a piece of one-eighth-inch pipe which extends nearly the whole length of the mixer. The water thus pa.s.sing into one end returns inside the 1-inch pipe and leaves from the other. This simple device insures a thorough mixing.

The air-pipes are of thin bra.s.s, 1-inch internal diameter. One of them conducts the air from the ingoing air-pipe up into the top of the central dome or hood immediately above the head of the subject. The air thus enters the chamber through a pipe running longitudinally along the top of the dome. On the upper side of this pipe a number of holes have been drilled so as to have the air-current directed upwards rather than down against the head of the subject. With this arrangement no difficulties are experienced with uncomfortable drafts and although the air enters the chamber through this pipe absolutely dry, there is no uncomfortable sensation of extreme dryness in the air taken in at the nostrils, nor is the absorption of water from the skin of the face, head, or neck great enough to produce an uncomfortable feeling of cold.

The other air-pipe, as suggested, receives the air from the chamber at the lower front and pa.s.ses around the rear to the point where the outside air-pipe leaves the chamber.

The chamber is illuminated by a small gla.s.s door in the food aperture.

This is a so-called ”port” used on vessels. Sufficient light pa.s.ses through this gla.s.s to enable the subject to see inside the calorimeter without difficulty and most of the subjects can read with comfort. If an electric light is placed outside of the window, the illumination is very satisfactory and repeated tests have shown that no measurable amount of heat pa.s.ses through the window by placing a 32 c. p. electric lamp 0.5 meter from the food aperture outside. More recently we have arranged to produce directly inside the chamber illumination by means of a small tungsten electric lamp connected to the storage battery outside of the chamber. This lamp is provided with a powerful mirror and a gla.s.s shade, so that the light is very bright throughout the chamber and is satisfactory for reading. It is necessary, however, to make a correction for the heat developed, amounting usually to not far from 3 calories per hour.

By means of a hand microphone and receiver, the subject can communicate with the observers outside at will. A push-b.u.t.ton and an electric bell make it possible for him to call the observers whenever desired.

HEAT-ABSORBING CIRCUIT.

To bring away the heat produced by the subject, it is highly desirable that a constant flow of water of even temperature be secured. Direct connection with the city supply is not practicable, owing to the variations in pressure, and hence in constructing the laboratory building provision was made to install a large tank on the top floor, fed with a supply controlled by a ball-and-c.o.c.k valve. By this arrangement the level in the tank is maintained constant and the pressure is therefore regular. As the level of the water in the tank is approximately 9 meters above the opening in the calorimeter, there is ample pressure for all purposes.

[Ill.u.s.tration: FIG. 14.--Schematic diagram of water circuit for heat-absorbers of calorimeter. A, constant-level tank from which water descends to main pipe supplying heat-absorbers; _a_, valve for controlling supply from tank A; B, section of piping pa.s.sing into cold brine; _b_, valve controlling water direct from large tank A; _c_, valve controlling amount of water from cooling section B; C, thermometer at mixer; D, electric heater for ingoing water; E, thermometer for ingoing water; _d d d_, heat-absorbers inside calorimeter; F, thermometer indicating temperature of outcoming water; G, can for collecting water from calorimeter; _f_, valve for emptying G.]

The water descends from this tank in a large 2-inch pipe to the ceiling of the calorimeter laboratory, where it is subdivided into three 1-inch pipes, so as to provide for a water-supply for three calorimeters used simultaneously, if necessary, and eliminate the influence of a variation in the rate of flow in one calorimeter upon the rate of flow in another.

These pipes are brought down the inner wall of the room adjacent to the refrigeration room and part of the water circuit is pa.s.sed through a bra.s.s coil immersed in a cooling-tank in the refrigeration room. By means of a by-pa.s.s, water of any degree of temperature from 2 C. to 20 C. may be obtained. The water is then conducted through a pipe beneath the floor to the calorimeter chamber, pa.s.sed through the absorbers, and is finally measured in the water-meter.