Part 25 (1/2)
In such groups of nearly allied forms the single members must evidently be of common origin. It is not necessary for them to have originated all in the same place or at the same time. In some cases, as with _Draba verna_, the present geographic distribution points to a common birthplace, from whence the various forms may about the same period have radiated in all directions. The violets on the other hand seem to include widely diffused original forms, from which branches have started at different times and in different localities.
The origin of such groups of allied forms must therefore be the object of our research. Perhaps we might find a whole group, perhaps only part of it. In my opinion we have the right to a.s.sume that if _Draba_ and violets and [519] others have formerly mutated in this way, other species must at present be in the same changeable condition. And if mutations in groups, or such periodic mutations should be the rule, it is to be premised that these periods recur from time to time, and that many species must even now be in mutating condition, while others are not.
It is readily granted that the constant condition of species is the normal one, and that mutating periods must be the exception. This fact does not tend to increase our prospect of discovering a species in a state of mutability. Many species will have to be tested before finding an instance. On the other hand, a direct trial seems to be the only way to reach the goal. No such special guides as those that led us to the choice of pelories and double flowers are available. The only indication of value is the presumption that a condition of mutability might be combined with a general state of variability at large, and that groups of plants of very uniform features might be supposed to be constant in this respect too. On the contrary, anomalies and deviations if existent in the members of one strain, or found together in one native locality of a species, might be considered as an indication in the desired direction.
Few plants vary in the wild state in such a [520] measure as to give distinct indications. All have to be given a trial in the garden under conditions as similar as possible to their natural environments.
Cultivated plants are of course to be excluded. Practically they have already undergone the experience in question and can not be expected to change their habits soon enough. Moreover they are often of hybrid origin. The best way is to experiment with the native plants of one's own country.
I have made such experiments with some hundred species that grow wild in Holland. Some were very variable, as for instance, the jointed charlock (_Rapha.n.u.s Raphanistrum_) and the narrow-leaved plantain (_Plantago lanceolata_). Others seemed more uniform, but many species, collected without showing any malformation, subsequently produced them in my garden, either on the introduced plants themselves or among their offspring. From this initial material I have procured a long series of hereditary races, each with some peculiar anomaly for its special character. But this result was only a secondary gain, a meager consolation for the negative fact that no real mutability could be discovered.
My plants were mostly annuals or biennials, or such perennials as under adequate treatment might produce flowers and seeds during their [521]
first summer. It would be of no special use to enumerate them. The negative result does not apply to the species as such, but only to the individual strain, which I collected and cultivated. Many species, which are quite constant with us, may be expected to be mutable in other parts of their range.
Only one of all my tests met my expectations. This species proved to be in a state of mutation, producing new elementary forms continually, and it soon became the chief member of my experimental garden. It was one of the evening primroses.
Several evening-primroses have at different times been introduced into European gardens from America. From thence they have spread into the vicinity, becoming common and exhibiting the behavior of indigenous types. _Oenothera biennis_ was introduced about 1614 from Virginia, or nearly three centuries ago. _O. muricata_, with small corollas and narrow leaves, was introduced in the year 1789 by John Hunneman, and _O.
suaveolens_, or sweet-scented primrose, a form very similar to the _biennis_, about the same time, in 1778, by John Fothergill. This form is met with in different parts of France, while the _biennis_ and _muricata_ are very common in the sandy regions of Holland, where I have observed them for [522] more than 40 years. They are very constant and have proven so in my experiments. Besides these three species, the large-flowered evening-primrose, or _Oenothera lamarckiana_, is found in some localities in Holland and elsewhere. We know little concerning its origin. It is supposed to have come from America in the same way as its congeners, but as yet I have not been able to ascertain on what grounds this supposition rests. As far as I know, it has not been seen growing wild in this country, though it may have been overlooked. The fact that the species of this group are subject to many systematic controversies and are combined by different writers into systematic species in different ways, being often considered as varieties of one or two types, easily accounts for it having been overlooked. However, it would be of great interest to ascertain whether _O. lamarckiana_ yet grows in America, and whether it is in the same state of mutability here as it is in Holland.
The large-flowered evening-primrose was also cultivated about the beginning of the last century in the gardens of the Museum d'Histoire Naturelle, at Paris, where it was noticed by Lamarck, who at once distinguished it as an undescribed species. He wrote a complete description [523] of it and his type specimens are still preserved in the herbarium of the Museum, where I have compared them with the plants of my own culture. Shortly afterwards it was renamed by Seringe, in honor of its eminent discoverer, whose name it now bears. So Lamarck unconsciously discovered and described himself the plant, which after a century, was to become the means of an empirical demonstration of his far-reaching views on the common origin of all living beings.
_Oenothera lamarckiana_ is considered in Europe as a garden-plant, much prized for parks and ornamental planting. It is cultivated by seed-merchants and offered for sale. It has escaped from gardens, and having abundant means for rapid multiplication, has become wild in many places. As far as I know its known localities are small, and it is to be presumed that in each of them the plant has escaped separately from culture. It was in this state that I first met with this beautiful species.
Lamarck's evening-primrose is a stately plant, with a stout stem, attaining often a height of 1.6 meters and more. When not crowded the main stem is surrounded by a large circle of smaller branches, growing upwards from its base so as often to form a dense bush. These branches in their turn have numerous lateral [524] branches. Most of them are crowned with flowers in summer, which regularly succeed each other, leaving behind them long spikes of young fruits. The flowers are large and of a bright yellow color, attracting immediate attention, even from a distance. They open towards evening, as the name indicates, and are pollinated by humble-bees and moths. On bright days their duration is confined to one evening, but during cloudy weather they may still be found open on the following morning. Contrary to their congeners they are dependent on visiting insects for pollination. _O. biennis_ and _O.
muricata_ have their stigmas in immediate contact with the anthers within the flower-buds, and as the anthers open in the morning preceding the evening of the display of the petals, fecundation is usually accomplished before the insects are let in. But in _O. lamarckiana_ no such self-fertilization takes place. The stigmas are above the anthers in the bud, and as the style increases in length at the time of the opening of the corolla, they are elevated above the anthers and do not receive the pollen. Ordinarily the flowers remained sterile if not visited by insects or pollinated by myself, although rare instances of self-fertilization were seen.
In falling off, the flowers leave behind them a stout ovary with four cells and a large number [525] of young seeds. The capsule when ripe, opens at its summit with four valves, and contains often from two to three hundred seeds. A hundred capsules on the main stem is an average estimate, and the lateral branches may ripen even still more fruits, by which a very rapid dissemination is ensured.
This striking species was found in a locality near Hilvers, in the vicinity of Amsterdam, where it grew in some thousands of individuals.
Ordinarily biennial, it produces rosettes in the first, and stems in the second year. Both the stems and the rosettes were at once seen to be highly variable, and soon distinct varieties could be distinguished among them.
The first discovery of this locality was made in 1886. Afterwards I visited it many times, often weekly or even daily during the first few years, and always at least once a year up to the present time. This stately plant showed the long-sought peculiarity of producing a number of new species every year. Some of them were observed directly on the field, either as stems or as rosettes. The latter could be transplanted into my garden for further observation, and the stems yielded seeds to be sown under like control. Others were too weak to live a sufficiently long time in the field. They were discovered by sowing seed from indifferent plants [526] of the wild locality in the garden. A third and last method of getting still more new species from the original strain, was the repet.i.tion of the sowing process, by saving and sowing the seed which ripened on the introduced plants. These various methods have led to the discovery of over a dozen new types, never previously observed or described.
Leaving the physiologic side of the relations of these new forms for the next lecture, it would be profitable to give a short description of the several novelties. To this end they may be combined under five different heads, according to their systematic value. The first head includes those which are evidently to be considered as varieties, in the narrower sense of the word, as previously given. The second and third heads indicate the real progressive elementary species, first those which are as strong as the parent-species, and secondly a group of weaker types, apparently not destined to be successful. Under the fourth head I shall include some inconstant forms, and under the last head those that are organically incomplete.
Of varieties with a negative attribute, or real retrograde varieties, I have found three, all of them in a flowering condition in the field. I have given them the names of _laevifolia_, _brevistylis_ and _nanella_.
[527] The _laevifolia_, or smooth-leaved variety, was one of the very first deviating types found in the original field. This was in the summer of 1887, seventeen years ago. It formed a little group of plants growing at some distance from the main body, in the same field. I found some rosettes and some flowering stems and sowed some seed in the fall.
The variety has been quite constant in the field, neither increasing in number of individual plants nor changing its place, though now closely surrounded by other _Lamarckiana_s. In my garden it has proved to be constant from seed, never reverting to the original _lamarckiana_, provided intercrossing was excluded.
It is chiefly distinguished from Lamarck's evening-primrose by its smooth leaves, as the name indicates. The leaves of the original form show numerous sinuosities in their blades, not at the edge, but anywhere between the veins. The blade shows numbers of convexities on either surface, the whole surface being undulated in this manner; it lacks also the brightness of the ordinary evening-primrose or _Oenothera biennis_.
These undulations are lacking or at least very rare on the leaves of the new _laevifolia_. Ordinarily they are wholly wanting, but at times single leaves with slight manifestations of this [528] character may make their appearance. They warn us that the capacity for such sinuosities is not wholly lost, but only lies dormant in the new variety. It is reduced to a latent state, exactly as are the apparently lost characters of so many ordinary horticultural varieties.
Lacking the undulations, the _laevifolia_ leaves are smooth and bright.
They are a little narrower and more slender than those of the _lamarckiana_. The convexities and concavities of leaves are said to be useful in dry seasons, but during wet summers, such as those of the last few years, they must be considered as very harmful, as they retain some of the water which falls on the plants, prolonging the action of the water on the leaves. This is considered by some writers to be of some utility after slight showers, but was observed to be a source of weakness during wet weather in my garden, preventing the leaves from drying. Whether the _laevifolia_ would do better under such circ.u.mstances, remains to be tested.
The flowers of the _laevifolia_ are also in a slight degree different from those of _lamarckiana_. The yellow color is paler and the petals are smoother. Later, in the fall, on the weaker side branches these differences increase. The _laevifolia_ petals become smaller and are often not emarginated at the apex, becoming ovate [529] instead of obcordate. This shape is often the most easily recognized and most striking mark of the variety. In respect to the reproductive organs, the fertility and abundance of good seed, the _laevifolia_ is by no means inferior or superior to the original species.
_O. brevistylis_, or the short-styled evening primrose, is the most curious of all my new forms. It has very short styles, which bring the stigmas only up to the throat of the calyx tube, instead of upwards of the anthers. The stigmas themselves are of a different shape, more flattened and not cylindrical. The pollen falls from the anthers abundantly on them, and germinates in the ordinary manner.
The ovary which in _lamarckiana_ and in all other new forms is wholly underneath the calyx-tube, is here only partially so. This tube is inserted at some distance under its summit. The insertion divides the ovary into two parts: an upper and a lower one. The upper part is much reduced in breadth and somewhat attenuated, simulating a prolongation of the base of the style. The lower part is also reduced, but in another manner. At the time of flowering it is like the ovary of _lamarckiana_, neither smaller nor larger. But it is reached by only a very few pollen-tubes, and is therefore always incompletely fertilized. It does [530] not fall off after the fading away of the flower, as unfertilized ovaries usually do; neither does it grow out, nor a.s.sume the upright position of normal capsules. It is checked in its development, and at the time of ripening it is nearly of the same length as in the beginning. Many of them contain no good seeds at all; from others I have succeeded in saving only a hundred seeds from thousands of capsules.