Part 12 (1/2)

What kind of work can be done with respect to this morphodynamic orthograde tendency? Notice that stirring with a paddle in parallel with this rotation will not disrupt it. But stirring in any other pattern, or merely impeding this pattern of flow, will tend to disrupt it. These disturbing patterns of interaction are in this way contragrade to the orthograde tendency of the system to regularize. The non-parallel patterns of interaction are doing morphodynamic work against this orthograde tendency, whereas the parallel pattern is not. Notice also that any pattern that results in morphodynamic work also involves thermodynamic work, whereas the parallel pattern does not. But this is relative to the orthograde tendency that is intrinsic to the system in question. Thus, if the flow tends to be chaotic because the geometric organization of the stream pattern with respect to the flow rates are not conducive to vortex formation, stirring in the appropriate direction can aid vortex formation, and decrease turbulence. This would also be morphodynamic work, since vortex formation was not the intrinsic orthograde tendency.

Consequently, the introduction of morphodynamic work also requires thermodynamic work. And notice that the amount of mechanical/thermodynamic work involved is strongly dependent on the form of the paddle-induced disturbance with respect to the form of the flow. This suggests a general rule: in order to perturb a dissipative self-organized dynamical form away from its spontaneous attractor tendency, a conflicting form must be introduced, and the combined amount of thermodynamic and morphodynamic work involved will be a function of the number of dimensions of asymmetry that are reversed in the process, adjusted according to their relative magnitudes in the two alternative dynamical processes. In this way, the parameters defining the higher-level morphodynamic work play a significant role in determining the correlated amount of thermodynamic work that is required.

Recognizing that there are both parallels and asymmetric dependency relations.h.i.+ps involved, we need to be clear about the a.n.a.logies and disa.n.a.logies between morphodynamic and thermodynamic work. For example, we might be tempted to describe the regular dynamics of simple self-organized processes as morphodynamic equilibria, on the a.n.a.logy of thermodynamic equilibria. Such an a.n.a.logy is complicated by the fact that many morphodynamic processes remain partially chaotic (like the stream example above)-describable only in terms of constraints, not geometric regularities-and even simple morphodynamic systems may have more than one quasi-stable dynamical attractor. This complicated attractor logic, which has become the hallmark of complexity studies, also complicates the a.n.a.lysis of morphodynamic work.

Because of the potential for explosive symmetry breaking in morphodynamic systems, describing the way that the interaction between morphodynamic processes can transform their orthograde dynamics into contragrade change in the morphodynamic domain (i.e., the description of a morphodynamic engine, if you will) is far more difficult than for thermodynamic systems. This is in part due to the hierarchic complexity of morphodynamic processes. It takes thermodynamic work to drive morphodynamic attractors, so morphodynamic interactions cannot undermine this thermodynamic base and still do morphodynamic work. Precisely organizing a mediating mechanism that is able to take advantage of the interactions between different morphodynamic orthograde attractors is thus limited by the need to align both thermodynamic and morphodynamic processes. Moreover, since morphodynamic attractors are not merely defined by quant.i.tative parameters (e.g., energy gradients) but also by formal symmetry properties, the possibilities for contragrade alignment of different morphodynamic processes are very much more restricted.

FIGURE 11.3: A diagrammatic depiction of the thermodynamic work performed by an organism to maintain its integrity with respect to thermodynamic degradation, and to support its higher-order orthograde (teleodynamic) capacity to replicate the constraints that support this process. Organisms must extract resources from their environment, e.g., by doing work (a) to constrain some energy gradient in order to access free energy to maintain their metabolisms (which maintain a persistently far-from-equilibrium state). Because the environment is often variable, they must also obtain information (i) about this variability in order to use it as a source of constraints (c) to regulate the work they perform. Constraints are depicted as right triangles deviating energy flows (arrows), and the constraints inherited genetically (g) are depicted as both within and outside the organism (since they are inherited from a parent organism).

Despite these conceptual difficulties, we have already described one special case of morphodynamic work: a simple molecular autogenic system. It is a special case, because of its precise recursive synergistic organization. But before reconsidering this special case in terms of the work involved, we need to examine some more generic examples in order to gain a general conception of what gets transformed during morphodynamic work.

Consider, for example, a resonating chamber such as a flute or pennywhistle that is continually supplied with energy by air pa.s.sed across an aperture. With this steady turbulent flow at one end, the air along the length of the resonating tube settles into a stable vibratory pattern, heard as a continuous tone. Changes in the effective length of the chamber, produced by opening or closing holes at various positions along the length, change which patterns of vibration (tones) are stable, even if the flow of blown air remains the same. Resonant vibrations are remarkably robust in linear chambers like the tube of a flute, but in irregular-shaped chambers they become less reliable and more sensitive to changes in the energy supplied. Even in a musical instrument like a flute, fluctuation of input energy can disrupt convergence to a stable vibration. A common experience for a novice flutist is to blow too hard, too soft, or at the wrong angle across the mouthpiece, with the result that the sound warbles between alternate tones, interspersed with the hissing sound of chaotic air flow. This demonstrates that the morphodynamic regularity exhibited by the tone being produced is sensitive to the rate and the form of the perturbing energy being introduced.

Once stable vibration is established, however, the sound of the flute can induce other objects (e.g., a winegla.s.s) to vibrate sympathetically, to the extent that they too are capable of regular vibration in the frequency range of the flute tone. Interestingly, if this sympathetic resonator has its own distinctive resonant frequency, an unstable interaction may result, with the consequence that it vibrates in a pattern that is different from but typically attracted to some regular multiple of the frequency of the flute tone: a harmonic. Not only constant energy but constantly dissonant vibrations must be provided to induce the gla.s.s to a.s.sume a vibration pattern that is different from its most robust spontaneous resonant frequency. Thus there are two levels of work that are necessary to maintain this non-spontaneous regularity: (1) thermodynamic work, which is responsible for the energy necessary to induce the sympathetic resonator to vibrate; and (2) morphodynamic work, which is necessary to cause the sympathetic resonator to vibrate at something other that its spontaneous frequency.

The role of morphodynamic work is demonstrated by the fact that even with the same energy, different driving frequencies will have very different capacities to push the resonant response away from its spontaneous frequency. In other words, the differential in regularity between the vibratory patterns of the two resonating objects results in a pattern in the one that would not occur if this specific pattern of excitation were different or random. Moreover, if these two differently resonant objects are rigidly connected, the effect can be bidirectional: the total system will likely a.s.sume a vibrational state that is a complex superposition of the two resonant patterns (in proportion to other relative properties, such as shape, relative ma.s.s, and vibrational rigidity) as each structure becomes a source of morphodynamic work affecting the other.

Let's be more specific about this subtle distinction between the two levels of work in this example. Separately, each of the resonating structures tends to converge to a different, relatively stable, global vibrational state when mechanical energy is introduced and allowed to dissipate. Resonance is a morphodynamic attractor: the resultant stable form of an orthograde tendency. It is produced because of the geometry of the resonating chamber, the vibration-propagating characteristics of the material, and the level and stability of the input energy. These are the boundary conditions responsible for the morphodynamic attractor tendency. For differently resonant bodies, the boundary conditions are different, and will determine different orthograde tendencies. The thermodynamic work-blowing-that induces vibration is potentially able to produce an unlimited number of vibratory patterns. What actually gets produced is dependent on the specific boundary conditions imposed by the flute. Although no vibration will occur without the introduction of a stable airflow to contribute the energy of vibration (constant thermodynamic work), the properties of the flute will constrain the domain of the possible spontaneous (orthograde), stable vibrational patterns. And this will be robust to modest changes in the flow of air, so that a range of input energies will converge to a single resonant frequency.

This many-to-one mapping of thermodynamic work to morphodynamic work is a characteristic feature of this dependency relations.h.i.+p. But it is not simply a many-to-one relations.h.i.+p; it is the mapping of a continuum to discrete states. We will return to this feature later, because it turns out to be a critical contributor to the discontinuity of emergent effects as we move up the hierarchy from thermodynamic to morphodynamic to teleodynamic processes.

The morphodynamic work produced by linking oscillators results from one set of boundary conditions affecting another. Specifically, their differences in geometry, ma.s.s, and the way they conduct vibratory energy all contribute to the total work of this transfer of form. The thermodynamic work component is roughly the same irrespective of whether the coupled oscillators reinforce each other's vibrations or rapidly damp all regular vibrations, transferring most of the energy into the irregular micro vibrations of heat. To the extent that their resonant features interact to produce a s.h.i.+ft in global regularities compared to the uncoupled condition, morphodynamic work is also involved, and can be judged more or less efficient on the basis of this transfer of regular global dynamics. But whereas thermodynamic coupling yields a combined system that dedifferentiates toward a state of global equilibrium-determined by the mean boundary condition of the total-morphodynamic coupling does not. There is nothing quite a.n.a.logous to a ”mean” value, because of the relative discreteness of the morphodynamic attractors involved. The coupling of boundary conditions must be such that each reinforces the other in some respect in producing a third discrete orthograde tendency: one that is both amplified and amplifies each of the other two. For two oscillators, this can be a simple common multiple of the two resonant frequencies; but with additional couplings, the probability of simple and discrete dynamics quickly diminishes, and dynamical chaos results. And beyond the domain of simple oscillators this is far more likely to be the case.

This means that the ability to perform morphodynamic work can be quite easily disrupted. In coupled physical resonators, for example, if one structure is more regular in shape and form, and therefore more effective at form amplification, it will tend to drive the vibratory activity of the coupled system, though this will be resisted and constrained by the vibratory regularities or irregularities of the second structure to which it is linked. In this case, we can say that morphodynamic work is continually bringing the less resonant system to a non-spontaneous semi-regular vibratory state. In the case where both have different but nearly equally efficient resonant tendencies, the resulting vibratory state of the coupled system may converge to a pattern that combines the two, amplifying common harmonics and producing complex waveforms, or may never resolve a chaotic state, because of the incompatibility of their orthograde tendencies.

In such cases of competing resonant tendencies, we can discern another parallel with thermodynamic work: some systems are more difficult to perturb than others. In other words, the orthodynamic tendencies of different systems may be of different ”strengths.” Just as objects with greater momentum or inertia and thermodynamic systems with greater total specific energy require more mechanical work to produce equal changes of motion compared to less ma.s.sive or extensive systems, morphodynamic systems can differ greatly in the relative strength of their attractor dynamics. There are two potential contributors to this morphodynamic ”inertia.” First, one system may simply be more susceptible to thermodynamic work because it is physically smaller, less ma.s.sive, or better at conducting energy. This follows from the simple fact that morphodynamic work is entirely dependent on thermodynamic work. But second, one system may be more regular, such as the shaped body of a resonant musical instrument, or it may be more easily regularized, as is the minimally constrained flow of fluid in a Benard convection cell or vortex. This combination of factors will determine both the potential to do morphodynamic work and the tendency to resist morphodynamic change.

The potential to perform either thermodynamic or morphodynamic work is proportional to the divergence from an attractor maximum. But this can be a problem for the capacity to do morphodynamic work because systems with complex attractors tend not to exhibit consistent extended spontaneous change in any single direction. This means that only systems with highly reliable and relatively simple attractor dynamics are able to contribute any significant amount of morphodynamic work. This makes it difficult to find spontaneous examples of morphodynamic work, and makes it very rare for highly complex morphodynamic transformations to occur without highly sophisticated forms of human intervention. So, although simple examples such as the coupled resonators described above represent exceptions in nature, not the rule, simplicity is an advantage when it comes to making use of morphodynamic work. This is not, however, an absolute impediment, since elaborate webs of morphodynamic work are found in the metabolic networks of living organisms.

What about more complex morphodynamic processes that produce regularities with more dimensions of regularity? Consider these somewhat fanciful Rube Goldberg uses for Benard cell formation. The regular hexagonal tessellation of the surface of the water could, for example, be utilized to sort small floating objects into discrete collections of similar numbers, each collection sitting within the tiny hexagonal bowl of a Benard cell. Or the concave shape of these regular surface depressions could be used to focus incident light to dozens of individual points just above the surface. In these cases, there is very little thermodynamic work linking the two interacting substrates (especially in the case of reflected light), but the morphodynamic work occurs as the spontaneous regularization of fluid convection similarly regularizes something else that otherwise would never a.s.sume this configuration. Thus, via morphodynamic work two otherwise independent thermodynamic systems accomplis.h.i.+ng thermodynamic work can be coupled.

More practical examples of morphodynamic work include the use of specially shaped vessels or vibrating containers for sorting different shapes, weights, or sizes of particulate materials, such as pills or grains. Depending on the shape of the vessel, the way it is rotated or shaken to induce the contained objects to move with respect to one another, and the differences in object features (such as shape or weight), it is possible to automatically separate objects, transforming a well-mixed, uniformly distributed collection into a highly asymmetric distribution in which different types of objects occupy distinct positions relative to one another. Natural examples of this particulate sorting process occur with pebbles on ocean beaches and stones rising to the surface in soil as a result of periodic freezes and thaws; but other uses include ways of separating pills and minerals, as well as the cla.s.sic method of separating gold nuggets from sand and other pebbles, by ”panning.”

Morphodynamic work shares one very significant attribute with thermodynamic work: the law of diminis.h.i.+ng returns. As a consequence of the first and second laws of thermodynamics, and the constraints of doing work, perpetual motion machines are impossible. There are always some degrees of freedom of increasing entropy that cannot be fully constrained, and so the capacity to do work in one direction, and then reverse this organization and use that gradient to do work in the opposite direction, decreases with each step, making full reversal un.o.btainable. The potential to do iterated morphodynamic work also diminishes rapidly with increasing degrees of freedom and thus also with each interaction. There is something a.n.a.logous to nature's prohibition of perpetual motion machines when it comes to morphodynamic work as well. In fact, the efficiency problem is much worse, because of the discreteness issue. In most instances of coupled morphodynamic processes, the interactions between their distinct regularities result in complex dynamics that appear highly chaotic. Cla.s.sic examples of so-called deterministic chaos reflect the complexity that can result even as a result of coupling three otherwise quite simple morphodynamic processes into a larger system, as for example happens when different length pendulums are coupled with one another. Whereas the recursive dynamics in a simple self-organizing system amplify regular dynamic features, strongly coupled self-organizing processes can recursively amplify both concordant and non-concordant boundary conditions, producing complex and often extreme divergence and damping effects. This is especially true if thermodynamic energy is continually introduced, as in dissipative systems. This kind of coupling of organized dynamical processes is probably one of the factors contributing to the unpredictable and almost turbulent character of human social and economic systems; though, as we will see, this tendency to complexity becomes amplified to a far greater extend when we consider the superimposition of teleodynamic processes.

Given these limitations, and since morphodynamic regularities even with robust simple attractors only form under very limited boundary conditions, interactions between morphodynamic systems with different boundary conditions end up producing larger systems with complicated and irregular boundary conditions. So, for many reasons, morphodynamic work of any significant complexity and magnitude will tend to occur quite rarely under natural circ.u.mstances.

TELEODYNAMIC WORK.

There is, however, one cla.s.s of phenomena that presents glaring exceptions to this rarity: living processes. Indeed, self-organizing processes in living organisms and ecosystems defy the apparent problem of the chaos that should tend to result from coupling self-organizing processes to one another-and to an astounding degree-since even the simplest bacteria are composed of hundreds of strongly coupled cycles of chemical processes. Life appears to have cornered the market on morphodynamic work, and to have done so by taming the almost inevitable chaos that comes with morphodynamic interactions. Not only are living organisms themselves enormously complex webs of self-organizing processes, but they also tend to evolve to complement higher-order complex dynamical regularities made up of the large numbers of other organisms comprising their ecosystem, all embedded in semiregular patterns of climatic and resource change. So, it is within living processes that we must turn to find the greatest number and diversity of exemplars of morphodynamic work.

Besides energy and raw materials to maintain their far-from-equilibrium thermodynamics, living organisms also require incessant form production processes: production of specific molecular forms, specific patterns of chemical reactions, and specific structural elements. Morphodynamic work must be reliable and constant for life to be possible. This requires both thermodynamic and morphodynamic work cycles-engines of form production that are a.n.a.logous to human engines designed to perform thermodynamic work cycles. The process of biological evolution has not merely ”discovered” and ”remembered” how to set up a vast array of morphodynamic work processes; it has discovered complex synergies and reciprocities between them that enable repeatable cycling. We have encountered a simple example of this in the case of autogens, but to understand how the evolutionary process is able to mine the morphodynamic domain for these sorts of reciprocities and complementarities, we will first need to understand a yet-higher-order form of work: teleodynamic work.

Teleodynamic work can be defined a.n.a.logously to the prior levels of work we have described. It is the production of contragrade teleodynamic processes. Since this must be understood in terms of orthograde teleodynamic processes, the first step in describing this level of work is to define and identify examples of orthograde teleodynamics. In general terms, an orthograde teleodynamic process is an end-directed process, and more specifically, one that will tend to occur spontaneously. Although teleodynamic processes are incredibly complex, and an explanation of the structure of teleodynamic work is by far the most elaborate-since it is const.i.tuted by special relations.h.i.+ps between forms of morphodynamic work-it is also the most familiar. So it may be helpful to first consider the human side of teleodynamic work before delving into the underlying dynamical structure of this process.

Teleodynamic work is what we must engage in when trying to make sense of an unclear explanation, or trying to produce an explanation that is unambiguous. It is what must be produced to solve a puzzle, to persuade resistant listeners, or to conduct scientific investigations. It is also the sort of work that goes on in board meetings and in domestic arguments, and which leads to the design of machines and governments. And it characterizes what is difficult about creative thought processes. Although these examples could mostly be considered forms of mental work, they have a natural kins.h.i.+p with the simple process of communicating, and with biological adaptive processes as well. All share in common the work of generating new information and new functional relations.h.i.+ps, or of changing thought patterns or habits of communication and human intentional actions.

If you have read to this point, you have probably found some parts of the text quite difficult to follow. Perhaps you have even struggled without success to make sense of some claim or unclear description. But unless you are a very easily agitated reader, you will probably not have found yourself running out of breath or breaking a sweat because of the energy you have exerted to do this. While writing this chapter, I took a break to cut and split some wood for a fire. Doing so worked up a sweat. Though only a small fraction of writing time was devoted to this process, I no doubt expended far more energy chopping wood than in all my writing for the day. But which was the more total work? Obviously, the energy expended isn't the most useful means of a.s.sessment. Nevertheless, engaging in the effort of writing or reading does require metabolically generated energy, and the more difficult the task of creation or interpretation or the more stimulating or frustrating, the more thermodynamic work tends to be involved.

We have no trouble recognizing the capacity to do this kind of work. In an individual, we may describe it as intelligence. In a simpler organism, we may describe it in terms of its adaptability. This is the ”power” that we recognize in great insights, influential ideologies, or highly developed a.n.a.lytical tools. It is the power to change minds and organize human groups. It can ultimately translate into ”the power to move mountains,” as the old adage implies, though its capacity to do this is necessarily quite indirectly implemented. It is commonly described as ”the power of ideas.”

FIGURE 11.4: Reading exemplifies the logic of teleodynamic work. A pa.s.sive source of cognitive constraints is potentially provided by the letterforms on a page. A literate person has structured his or her sensory and cognitive habits to use such letterforms to reorganize the neural activities const.i.tuting thinking. This enables us to do teleodynamic work to s.h.i.+ft mental tendencies away from those that are spontaneous (such as daydreaming) to those that are constrained by the text. Artist: Giovanni Battista Piazzetta (16821754).

So, engaging in teleodynamic work is one of the most familiar mental experiences of being a human agent. It is what characterizes what we describe as ”intentionally willed action.” It is naturally understood as work because of the resistances that it can overcome, and because it is required in order to modify otherwise spontaneous mental or communicative processes, such as an otherwise unquestioned belief or habitual process of reasoning. But as familiar as this experience is in everyday life, its relations.h.i.+p to physical work is often quite ambiguous, even though it is intuitively taken for granted. No one would confuse what must be done to raise a weight with what must be done to raise a question, but both involve effort, that experience of promoting contragrade dynamics. And while physicists and engineers can be incredibly precise at comparing the amount of work that is done to accelerate a car versus a baseball to 60 miles per hour, it seems almost a matter of idiosyncratic opinion how one should compare the work of solving a mathematical equation to that of solving a crossword puzzle clue. So we might be forgiven for thinking that the latter cases of mental work are merely metaphorical comparisons to physical work.

The production of teleodynamic work is, of course, totally dependent on the other forms of work we have been considering. Teleodynamic work depends on morphodynamic work depends on thermodynamic work. Mental work, for example, requires physiological processes doing thermodynamic work to maintain the constant activity of neurons producing and transducing signals, and also the production of spontaneous and non-spontaneously self-organized patterns of neural activity that recursively amplify and damp as they traverse complex changing neural networks. What is additionally involved, however, is the generation of new semiotic relations.h.i.+ps and new end-directed tendencies in the face of spontaneous habitual interpretive tendencies and countervailing end-directed processes. In the performance of difficult interpretive processes, for example, we directly experience both the energetic demands and the morphological demands of the supporting lower-level forms of work that are also involved. There is the fatigue that is generated by struggling to maintain attention on the interpretive problem until it is solved, and the challenge of trying to find an appropriate translation into other words or to conjure up an appropriate mental image among the many spontaneously arising but inadequate alternatives. But although this domain of work necessarily involves the others, it is intuitively not merely reducible to these simpler processes alone, as mere ”mindless” physical labor demonstrates. Thus, the free a.s.sociation of daydreams or the nearly unconscious performance of a highly familiar task are not experienced as mentally effortful, even though they do require metabolic support and the generation of distinct appropriate patterns of neural activity. So we intuitively recognize the distinctive effortful character of teleodynamic work.

Although the exercise of mental effort is unquestionably its most familiar exemplar, teleodynamic work occurs in many forms that are neither cognitive nor even a.s.sociated with brains. Before we can hope to understand the processes responsible for the teleodynamic work that occurs in and between human brains, we will need to a.n.a.lyze its organizational details and its dependency on other forms of work in some far simpler systems. To do this, we can back down in complexity and familiarity, and at the same time incrementally unpack the complex contributions of other forms of work.

One of the more fundamental forms of teleodynamic work is that which occurs in the process of biological evolution. This is epitomized by novel functional adaptations and their heritable representations being constantly created where none previously existed. In other words, new teleodynamic systems and relations.h.i.+ps are generated from the interactions of prior teleodynamic systems with respect to their shared environmental contexts. Using natural selection as an exemplar, let's a.n.a.lyze what makes it teleodynamic work, using the generic logic that we have outlined above for thermodynamic and morphodynamic work.

To begin the a.n.a.lysis, we need to identify what const.i.tutes orthograde and contragrade processes in this teleodynamic domain. In the case of biological evolution, there are two very general cla.s.ses of orthograde teleodynamic processes. First, there are the actions of organisms that function to maintain them against degrading influences, such as thermodynamic breakdown of macromolecules and degradation of metabolic networks. Second, there are processes of growth, differentiation, and reproduction, which are involved in producing what amount to backup copies of the organism, in the form of daughter cells or offspring. These are teleodynamic processes because they are end-directed toward specific target states. They are orthograde because they are what organism dynamics produce naturally and spontaneously (given supportive underlying forms of morphodynamic and thermodynamic work). Organisms are of course highly complicated synergistic constellations of teleodynamic processes that each collectively contribute some fraction of the global teleodynamics of the organism. But for the purpose of this first level of a.n.a.lysis, we can lump all together as though the life history strategy of the organism is a single orthograde teleodynamic process. In this context, we can identify contragrade teleodynamic processes as those that are organized in such a way that they impede or contravene these orthograde processes. In other words, contragrade biological teleodynamic processes are those that are in some way bad for the organism, in that they are detrimental to survival and reproduction.

With respect to evolution, where the critical end is reproductive success that is sufficient to guarantee continuation of one's lineage, reproductive compet.i.tion from other members of the species is the most directly relevant source of precisely contragrade influences. In this sense, each organism is doing teleodynamic work against its reproductive compet.i.tors. So far, this is intuitively familiar. The work required to compete with other organisms at many levels, over many kinds of resources, in order to achieve diverse ends, is in many ways the hallmark experience of being a living organism. But like other forms of work, teleodynamic work can also be used to transform one form of teleodynamic process into another, and to generate emergent phenomena at a higher order. This is what happens in the process of natural selection.

So now let's describe natural selection in terms of teleodynamic work. In the standard model of natural selection, variants of the same teleodynamic process (adaptive traits) that are represented in the different members of a species in one generation are brought into compet.i.tion over resources critical to reproduction. In this compet.i.tion of each against all (in the simplest case), work done to acquire resources, mates, and so on is also work that degrades the teleodynamic efficacy of compet.i.tors with respect to these same requirements. This work is both directly and indirectly a source of distributed contragrade effects on other organisms. Because the teleodynamics of organisms is supported by extensive morphodynamic and thermodynamic work, it is also the case that teleodynamic compet.i.tion ramifies to all these lower-level processes as well. And since all ultimately depend on thermodynamic work, this is the final arbiter of teleodynamic success. a.n.a.logous to the way the coupling and juxtaposition of non-concordant orthograde thermodynamic and morphodynamic processes can be utilized to generate specific contragrade patterns of entropy decrease and form production, respectively, the complex juxtaposition of non-concordant teleodynamic processes can generate teleodynamic systems that would not otherwise occur. Because the widespread integration of diversely contragrade teleodynamic interactions in one generation is mediated through an environment that is also the source for the resources supporting their underlying morphodynamic and thermodynamic work processes, the constraints and regularities intrinsic to that environment become the a.n.a.logue to the constraints of an engine for channeling the teleodynamic work into forms consistent with that environment.

In biological evolution, this ultimately results in an increasing asymmetry of the presence of these teleodynamic traits in succeeding generations. The differential reproduction and elimination of the less fitted variants from the population in each generation thus has a recursive influence on all levels of work involved, maintaining them in concordance with those constraints. More significantly, due to the inevitable spontaneous (thermodynamic) degradation of the capacity to do work at all these levels, new variant teleodynamic complexes continually arise and are entered into this evolutionary work cycle. The familiar result is the production of increasingly integrated, increasingly diverse, increasingly complex, increasingly well fitted teleodynamic systems.

What we can conclude from this is that evolution is a kind of teleodynamic engine, powered by taking advantage of spontaneous thermodynamic, morphodynamic, and teleodynamic processes, and which continually generates new teleodynamic processes and relations.h.i.+ps. Additionally, because teleodynamic processes are supported by the synergistic organization of morphodynamic and thermodynamic work cycles, these too evolve, as do the synergies that bind them together into the individual causal loci we know as organisms.

EMERGENT CAUSAL POWERS.