Part 6 (2/2)
Moreover, the sulfuric acid must be added slowly and with stirring.
If these conditions are not followed, material containing brown particles results.
The mother liquor obtained from the crystallized hydrazine sulfate contains a small amount of hydrazine. If 200 g.
of copper sulfate are dissolved in water and added to 10 l.
of the filtrates from the above processes, a light-blue crystalline precipitate of the double salt of copper sulfate and hydrazine sulfate will be formed after ten hours. This salt, when suspended in ten times its weight of distilled water and treated with hydrogen sulfide, decomposes into copper sulfide and hydrazine sulfate.
After the copper salt has been filtered off, the solution is concentrated until the hydrazine sulfate crystallizes.
The yield of product is small, so that it is hardly advisable to undertake this recovery in the laboratory.
It is possible for one man, simultaneously evaporating six dishes of the hydrazine mixture, to turn out from 20 to 25 runs in nine hours.
The time for the evaporation of a solution, such as is mentioned in the experimental part, with a four-flame Bunsen burner, is two to three hours; if the evaporation is carried out more slowly than this, the yield of product is distinctly diminished.
3. Other Methods of Preparation
Hydrazine salts have been prepared by the action of hypochlorites on ammonia[1] or urea;[2] by the hydrolysis of salts of sulfohydrazimethylene disulfonic acid;[3] by the hydrolysis of triazoacetic acid;[4] by the reduction of diazoacetic ester;[5] by the reduction of nitroguanidine followed by hydrolysis;[6] by the reduction of the nitroso derivatives of hexamethylene tetramine;[7] by the reduction of nitrates or nitrites with zinc in neutral solution;[8] by the action of sodium bisulfite on hyponitrous acid followed by reduction;[1b] by the reduction of K2SO3N2O2;[2b] by the action of ammonia on dichlorourea;[3b]
by the reduction of nitrosoparaldimin;[4b] by the action of copper sulfate on ammonia at high temperatures;[5b] by the reduction of methylene diisonitrosoamine;[6b] by the hydrolysis of the addition product of diazoacetic ester and fumaric or cinnamic esters.[7b]
[1] D. R. P. 192,783; Chem. Zentr. 1908 (I), 427; Chem. Ztg. 31, 926 (1907); D. R. P. 198,307; Chem. Zentr. 1908 (I), 1957; Eng. Pat.
22,957; C. A. 2, 1999 (1908); U. S. Pat. 910,858; C. A. 3, 1065 (1909); French Pat. 382,357; C. A. 3, 2358 (1909); Ber.
40, 4588 (1907); Laboratory Manual of Inorganic Preparations, by A. B. Lamb, Harvard University, Cambridge, Ma.s.s.
[2] J. Russ. Phys. Chem. Soc. 37, 1 (1905); Chem. Zentr. 1905 (I) 1227; D. R. P. 164,755; Frdl. 8, 53 (1905); French Pat. 329,430; J. Soc. Chem. Ind. 22, 1063 (1903); Chem. Zentr. 1905 (I) 1227.
[3] D. R. P. 79,885; Frdl. 4, 26 (1895); Ber. 28, 2381 (1895).
[4] Ber. 20, 1632 (1887); Chem. News 55, 288 (1887); D. R. P. 47,600; Frdl. 2, 554 (1889); J. prakt. Chem. (2) 39, 27 (1889).
[5] Ber. 27, 775 (1894); 28, 1848 (1895); D. R. P. 58,751; Frdl. 3, 16 (1891); D. R. P. 87,131; Frdl. 4, 28 (1896).
[6] Ann. 270, 31 (1892); D. R. P. 59,241; Frdl. 3, 16 (1891); Eng. Pat. 6,786; J. Soc. Chem. Ind. 11, 370 (1892).
[7] D. R. P. 80,466; Frdl. 4, 27 (1895); Ann. 288, 232 (1895).
[8] Eng. Pat. 11, 216; J. Soc. Chem. Ind. 14, 595 (1895). [1b] Ber.
33, 2115 (1900); Ann. 288, 301 (1895).
[2b] Ber. 27, 3498 (1894).
[3b] J. Chem. Soc. 95, 235 (1909); Chem. News 98, 166 (1908).
[4b] Ber. 23, 752 (1890).
[5b] Chem. News 66, 223 (1892).
[6b] Ber. 27, 3292 (1894);
[7b] Ber. 21, 2637 (1888).
<script>