Part 7 (1/2)

aItas a little c.o.c.ktail. Itall make you feel better,a she recalled the doctor saying.

aWell, I donat know if I ought to be drinking a c.o.c.ktail,a she responded, her voice light and bantering.

aDrink it all,a he told her. aDrink it on down.a The concoction was fizzy and sweet, like a cherry c.o.ke. It wasnat bad tasting.

Three months later Helen was rolled into the delivery room. The nausea had not let up during her pregnancy. She had gained only six pounds and never even had to wear maternity clothes. Six hours after her labor began, a al.u.s.ty crya announced the entrance of her daughter, Barbara, into the world. The infantas skin was so smooth and white she looked like a porcelain doll. The mother and her newborn were discharged five days later. Both seemed healthy.

The bizarre health problems that were to plague mother and daughter began several months later. Helenas face swelled up and water blisters appeared on the right side. aYou could draw a line right down through the middle of my face,a she remembered. Then her hair fell out and she began to tire easily. In the ensuing years she had two miscarriages. The internal hemorrhaging was so severe during the second one that she had to have sixteen blood transfusions. She now suffers from pernicious anemia and is extremely sensitive to sunlight.

Barbara also felt exhausted through most of her childhood and now suffers from an immune system disorder and skin cancer. When she was about eleven, the lymph nodes under her arms swelled inexplicably. aShe was always really sleepy,a Helen remembered. aShead come in from school in the afternoons and have to lay down and take a nap. The other kids would say, aWhy donat you come out and play?a and shead say, aI will, after I take my nap.a a As it turns out, Helen was one of 829 women who pa.s.sed through the prenatal clinic between roughly September 1945 and May of 1947 and were given the strange-tasting c.o.c.ktails to drink. Like Helen, many of the women were led to believe that the drinks contained something nutritious that would benefit them and their babies. But nothing could have been farther from the truth. The drinks actually contained varying amounts of radioactive iron. Within an hour the material crossed the placenta and began circulating in the blood of their unborn infants.

Paul Hahn, an enthusiastic researcher in his thirties, may have looked down the hall and seen the rows of young female patients as he dashed back and forth between the clinic and his laboratory. He had arrived at Vanderbilt University in 1943 with a stack of published reports and five yearsa experience using radioisotopes. He was five feet eleven inches tall, weighed 185 pounds, and was described by a colleague as aan energetic and competent investigator equipped with imagination and ingenuity and fired by an insatiable curiosity.a2 Hahn had been a protege of Stafford Warrenas at the University of Rochester, where he obtained his Ph.D. in biochemistry in 1936.3 There, he had collaborated on several experiments with William Bale, the dour-looking scientist who oversaw Strong Memorial Hospitalas metabolic ward, and Joseph Howland, the young Manhattan Project doctor who later said he injected Ebb Cade with plutonium. Hahn had also studied under Robley Evans at MIT. During the war he frequently attended Manhattan Project meetings in Oak Ridge, and after it ended he was recruited for Operation Crossroads. One of the first scientists to take advantage of the Atomic Energy Commissionas radioisotope distribution program, Hahn had received the largest number of radioisotope s.h.i.+pments in the country in 1947.

The radioactive iron experiment Hahn was doing at Vanderbilt was a subset of a large nutrition study.4 Partially funded by the Rockefeller Foundation, the study focused on how a womanas diet and nutrition would affect her pregnancy and delivery, and the condition of her infant. William Darby, a young nutritionist, was in charge of the overall study. Many decades later he said that one reason he undertook the study was because the poor living conditions, eating habits, and water supplies of people living in the South at that time were equivalent to those found in underdeveloped countries. aThere were signs on the roadside showing which towns had healthy water.a5 The radioactive iron experiment was simple and straightforward. During the first visit to the clinic, a baseline blood sample was drawn and physical exam conducted by William Darby or one of his colleagues.6 The radioactive iron was administered during the second visit, and on the third visit, blood samples were drawn from the women to measure how much iron had been absorbed. Hahn wrote in a scientific paper published several years later that anywhere from 200,000 to 1,000,000 acountable countsa per minute were administered.

Darby stated in a sworn deposition taken in 1994 that the radioactive mixture was prepared in Hahnas office and brought to the clinic. He said researchers referred to the drinks as ac.o.c.ktailsa because that was the commonly used term.7 aWe just used it. I mean, this is likea”would you like to have a sweet?a Darby told reporters that he was acertaina that the women were told the c.o.c.ktails contained radioactive iron.8 But in his deposition taken several months later during a cla.s.s-action lawsuit, he said, aWe did not decide that we would not inform [the women]. We simply felt it wasa”felt it was unnecessary.aa9 aIs it your testimony, sir, that you and the planning committee didnat decide to tell the women about the radioactive iron nor did you decide not to tell them?a Don Arbitblit, an attorney representing the women in the cla.s.s-action lawsuit, asked.

aThatas right. Neither,a Darby responded.

Under questioning, Darby also stated that the radioactive iron had no therapeutic purpose and that he didnat know much about radiobiology.10 aIn fact, it was not my field,a he admitted.11 In the early stages of the experiment, Hahn conferred with Stafford Warren, who was still medical director of the Manhattan Project. Itas not known whether the two men specifically discussed the Vanderbilt experiment, but according to an entry in one of Warrenas notebooks, they discussed aisotopes.a12 Vanderbilt University was proud of the radioiron study and on December 13, 1946 issued a press release describing the experiment. Most of the radioactive iron came from the cyclotron at the Ma.s.sachusetts Inst.i.tute of Technology, the press release noted, awhile a recent supply has been received at Vanderbilt from the Oak Ridge chain reacting uranium pile.a13 Officials in Oak Ridge had become increasingly concerned about the radioactive iron manufactured in their reactor. In mid-1947 they discovered the iron-59 being distributed for medical purposes contained more iron-55 than had been expected. Iron-55 was thought to be too hazardous to be administered to humans because it had a half-life of five years. That meant that it would take five years for half of the iron-55 molecules in any given amount to decay to a nonradioactive compound, five more years for half of the remaining iron-55 to decay, and so on. By contrast, iron-59 was believed to have a half-life of forty-seven days, which meant that it would return to a stable form more quickly and subject the body to less radiation.

Oak Ridge officials were aware that any iron-59 contaminated with the longer-lived isotope was dangerous because it subjected the body to aconsiderable radiation.a And Paul Hahn, even while the Vanderbilt experiment was ongoing, was advising a Florida doctor in 1947 not to treat his patients with radioactive iron.14 aRadioactive iron regardless of the amount of activity contained is, to my knowledge, of no value whatsoever in therapy,a he wrote.15 Hahn believed that the half-lives of both iron-55 and iron-59 were afar too long.a An isotopeas halflife, wrote Hahn: must not be too long. Neither should there be an a.s.sociated component of long half-life or a long-lived contaminant whose separation is difficult or impossible to effect.16 Such long-lived materials prevent good control of the supplied radiation and also might prove ultimately to be carcinogenic in themselves. We have arbitrarily set about 10 days as the upper limit of half-life which is desirable from this point of view.

If Hahn had any similar concerns about the radioactive iron administered to the pregnant women, no correspondence has yet been made public describing those concerns. He transferred to Nashvilleas Meharry Medical College in 1948, about a year after the Vanderbilt study ended, and the women were largely forgotten. Many of the mothers and children exposed to the radioiron developed strange afflictions that were similar to those described by Helen Hutchison and her daughter. They lost their teeth and their hair. They developed bizarre rashes, bruises, strange blood disorders, anemiaa”and cancer.

Around Christmas of 1955, a young Nashville child named Carolyn Bucy developed a lump about the size of an orange on her upper thigh. Her mother, Emma Craft, a pretty woman with small, delicate features, had gone to the Vanderbilt prenatal clinic in early March of 1946 to find out if she was pregnant. Vanderbilt doctors had delivered her other three daughters, and she thought Vanderbilt was the best hospital in the world. At that time, she was married to Floyd Bucy, a carpenter and musician who made five dollars on Sat.u.r.day nights playing at the Grand Ole Opry.

After examining her, the doctors at the prenatal clinic told her she was indeed pregnant with her fourth child and instructed her to return seven days later. On her second visit, she testified in a videotaped deposition taken in 1994, doctors gave her the c.o.c.ktail to drink. Her daughter, Carolyn, was then a thirteen-week-old fetus.

aWhat is it that you were told about the drink?a asked attorney Don Arbitblit.17 aIt was vitamins,a responded Emma.

aWere you told anything else about the drink?a aNo.a aDid they say anything about whether the drink was good for you or not?a aYes. They said it was good for me.a Later in the deposition, she was asked, aBefore March of 1946, had you ever heard of radiation?a aWhen they dropped the bomb was the first I knew anything about radiation.a aWhat was it that you knew about radiation?a aWell, if you can drop something like that and kill people, well you know you donat want to take it.a Carolyn was born September 15, 1946, three weeks premature. Emma breast-fed the infant and she began to put on weight quickly. Both mother and daughter were healthy when they were discharged from the hospital eight or nine days later, but Emmaas eyes soon turned swollen and black. They had to carry me back to the hospital.18 My eyes looked like somebody had beat me. They were so swollen and black. I thought, aLord, Iam going blind.a a Eventually the swelling subsided and Emmaas life returned to normal. A year after Carolyn was born, she began working in a box factory so she could better provide for her children.

Blessed with a loving disposition and her fatheras musical ear, Carolyn quickly became the center of the familyas attention. She liked doing for people,a Emma recalled. She was about nine years old when her older sisters discovered the lump on her right thigh. The child begged her sisters not to say anything about it until after the holidays. When Emma was finally shown the growth, she was deeply frightened and took her daughter to Vanderbilt Hospital the following day. The ma.s.s would have to be removed, the doctors told her. Emma got a second opinion from another physician, named Elkin Rippy. He also felt the lump should be removed and agreed to do the surgery.

During the operation, Rippy discovered Carolyn had cancer. Emma, who was in the waiting room, fainted when he told her what he had found. aWhen I came to, he told me, he said, Emma, aI got it all.a a But the cancer eventually came back. The disease spread into the childas spine, then moved up through her lungs, heart, throat, and finally, into her mouth. Emma prayed constantly and her husband went on a forty-day fast, drinking only fruit juice and water. Emma believed, aIf G.o.d can make us, then G.o.d can heal us.a Carolyn underwent radiation therapy and four more surgeries. Eventually she became paralyzed from the waist down and was forced to use a wheelchair. A catheter was connected to her bladder and she was fed intravenously. The doctors cut the cancer out of her mouth several times. aIt was black. Black cancer inside of her mouth just growing,a Emma recalled in her deposition. As the childas body withered, her face grew swollen and misshapen from the disease. She was fed intravenously, but sometimes Emma would spoon a little malt water into her mouth. Carolyn finally went into a coma and died on August 28, 1958, about two and one-half years after the cancer was discovered. She was eleven years old.

Emma slipped into a deep depression after her daughteras death. Her foreman at the box factory often told her to go for a ride when the grief threatened to overwhelm her. She would drive for hours wondering why G.o.d allowed her daughter to die such a horrible death. She often thought about killing herself by running her car into a brick wall or tree. But the knowledge that she had other daughters at home who needed her kept her from such an unthinkable act. Eventually she came to accept the loss of her daughter as G.o.das will and went on with her life.

In 1964, six years after Emmaas daughter died, a new group of researchers at Vanderbilt University decided to do a follow-up study of the women who had been given the radioactive iron c.o.c.ktails. The study began at a critical juncture in the history of the nuclear weapons program: Atmospheric testing had ended in 1963, but scientists were just beginning to make the connections between fallout and excess cancers in exposed populations.

The research community was also in an uproar over the controversial findings first reported in 1956 by Alice Stewart, a British researcher and physician.19 Stewart and her colleagues had conducted a vast survey of all children in England and Wales who died of leukemia or cancer between 1953 and 1955 before their tenth birthday. They discovered that one to two rads of radiation delivered to the fetus in utero caused a 50 percent increase in childhood cancer and leukemia.

The findings had enormous ramifications. Scientists had long known that the fetus, with its rapidly dividing cells, was extremely sensitive to radiation. But many physicians were incredulous that such small doses could have such dire consequences. Some raised questions about how Stewart collected the data, arguing that the women who got X rays were a amedically selected group,a or women who had an underlying const.i.tution or disease that predisposed their children to cancer. An independent study by Brian MacMahon of the Department of Epidemiology at the Harvard School of Public Health confirmed Stewartas findings.20 But studies of two other groups of amedically selecteda women whose babies had been exposed in utero showed no significant relations.h.i.+p between cancer mortality and exposure.

Vanderbilt researchers thought the radioiron study might shed light on the controversy. The women who pa.s.sed through the clinic and were given the radioactive iron c.o.c.ktails were also a amedically unselecteda group of patients. That is, the radioactive material was administered randomly to any pregnant woman who pa.s.sed through the clinic doors regardless of her health or nutritional status.

Ruth Hagstrom, a medical doctor in her early thirties, pulled together the old records and set about collecting the epidemiological data. A scientist named A. Bertrand Brill, who had joined Vanderbilt in 1964 following a seven-year stint at the Public Health Service and had done research on the j.a.panese bombing victims, attempted to ascertain the doses given the mothers and fetuses. aRuth Hagstrom did all the sleuthing,a he said.21 aMy involvement was in the dosimetry part of it.a The follow-up study was supported by the AEC and the Public Health Service where, as it happened, Paul Hahn had taken a job after leaving Nashvilleas Meharry Medical College in 1960. At the time the Vanderbilt follow-up study began, he was chief of the research grants staff of the Public Health Serviceas Division of Radiological Health. His division actually funded the follow-up study and Hahn also helped the Vanderbilt researchers to decipher the old data. aHe helped to find the records and interpret what his notations meant and things like that,a Brill said.22 The data collection began in 1964 and took three years to complete. First the researchers had to dig out the records of the pregnant women given the radioactive iron. They found records on 751 mothers. Next they gathered records on a acontrola group of pregnant women of roughly the same age who were seen at the prenatal clinic at about the same time who did not receive the radioactive iron. Records on another 771 mothers were obtained.

Both groups of mothers were then sent detailed questionnaires. If the women did not respond, the researchers attempted to contact them and obtain the information through interviews. According to a journalist who questioned them in 1994, both Ruth Hagstrom and officials from Vanderbilt claimed the mothers were informed of their earlier exposure to radioactive iron when the follow-up study was done.23 But Helen Hutchison and Emma Craft said they were never told the true purpose of the follow-up study. aThis lady called and told me she was doing a paper on the children that were born at Vanderbilt after the war,a remembered Helen.24 aShe called and said, aIam researching the baby boomers.a a Emma Craft said the questionnaire she received dealt mostly with cancer and did not mention anything about radioactivity or the radioactive iron. aI filled it out to the best of my ability and sent it back.a25 A January 29, 1965, form letter from Hagstrom to the mothers who received the radioiron begins: aYou may remember taking part in a study of diet and eating habits while attending Vanderbilt Obstetric Clinic in the years between 1945 to 1949.a The letter goes on to say that the university is doing a follow-up project and is interested in finding out more about the health of the mothers and children.26 The mothers are asked to fill out an enclosed survey and are told the information will be kept confidential. But nowhere in the letter is there any mention of radioactive iron c.o.c.ktails given decades earlier or that the true purpose of the follow-up is to find out what harmful effects, if any, were caused by ingestion of the radioactive material.

When the vast amount of data was a.n.a.lyzed, the scientists discovered four fatal malignancies among children who had been exposed to prenatal radiation and no cancers in the nonexposed group. Childhood cancer is extremely rare, and in a 1969 paper published in the American Journal of Epidemiology, Hagstrom and her coauthors concluded that the results asuggests a cause and effect relations.h.i.+p.a27 The findings, they continued, represent a asmall, but statistically significant increase aand is consistent with previous radiobiologic experience.a The deceased children included: a An 11-year-old boy who contracted liver cancer. The Vanderbilt scientists said the tumor was probably unrelated to the radiation because two of his older brothers also died of liver cancer. However, attorneys representing the mothers noted the other two brothers died at ages twenty-two and twenty-six, suggesting the radioactive iron may have brought on the cancer prematurely.

a A girl, five years and eleven months old, who died of acute lymphatic leukemia. Her mother received the radioactive iron in the twenty-third week of gestation.

a A boy, age eleven, who died from lymphosarcoma. His mother received the radioactive iron in the twentieth week of pregnancy.

a A girl, age eleven, who died of synovial sarcoma of the right thigh that spread to the lungs. Her mother received the radioactive iron when she was thirteen weeksa pregnant.

The fourth child fit the description of Emma Craftas daughter. Carolyn had the same kind of cancer. It started in the same place and in the same leg. She was the same fetal age when the radioiron was administered and the same age when she died. Emma Craft would have immediately spotted the similarities between the child described in the report and her own daughtera”but she would not see the journal article for nearly twenty-five years.

23.

THE FERNALD BOYS.

Kneeling on the bare mattress springs, holding his young body in a prayerful stillness so that it wouldnat sway, wouldnat sink deeper into the coils, Gordon Shattuck dreamed of flight; the adrenaline-filled plunge down the hill behind the boyas dormitory, through the hole he had dug beneath the barbed-wire fence, across the fields, and onto the railroad tracks that led away from the red-brick inst.i.tution. The dream, if he concentrated hard enough and long enough, blotted out the throbbing pain in his knees. All of the Fernald boys, many of them grandfathers now, remember the mattress springs; their squeaky unsteadiness as they clambered on top of coils looking for a solid purchase. The punishment was meted out for the slightest infraction, a smart-alecky remark, a disrespectful shrug. If their bodies swayeda”and it was hard for them not toa”the attendants would slap the soles of the boysa bare feet with switches. A week or so often pa.s.sed before the crescent-shaped bruises faded from their knees.

Gordon came from an unstable home. His father was an alcoholic and sometimes abusive. His mother, Henrietta, had had her first child at the age of fifteen. By the time she was thirty-six, she had given birth to twenty-one children. Gordon was transferred from foster home to foster home. He kept running away and finally wound up at the Walter E. Fernald State School in Waltham, Ma.s.sachusetts. The barred windows and gloomy buildings touched off an explosion of emotions within him.

Part English, part Irish, and part Native American, Gordon became one of the ringleaders at Fernald. He was small and wiry with black hair and hazel eyes. The inst.i.tution was tolerable if the boys obeyed the rules and did what they were told. But for youths like Gordon, life was hard and filled with punis.h.i.+ng abuse that left deep grooves of rage in his mind. Especially vivid is the evening an attendant locked him in the menas room, threw open the windows to the subfreezing temperatures, and poured bucket after bucket of cold water on him until he submitted to the manas s.e.xual demands. aHe molested me, I donat know how many times,a he said.1 Able-bodied youngsters who were not mentally r.e.t.a.r.ded and had been stashed in Fernald by poverty-stricken families, or the courts, helped run the school. They worked on the farm, picking the corn, tomatoes, turnips, and peas that were canned and fed to residents the following winter. They toiled in the kitchen, repaired the buildings, mowed the gra.s.s, and delivered the mail. One boy even reportedly worked in the morgue, slicing human brains into paper-thin sections that were pressed between gla.s.s slides. It wasnat the physical hards.h.i.+p so much as the lugubrious tedium that got to them; like the 1950s sitcoms blaring from black-and-white TVs, the steamed food, the long afternoons in the workshop making wallets, brooms, and mattresses.

Often Gordon was ordered to polish the floors with a heavy block of carpeted wood that hung from a rope harness around his neck. aRope rubbing,a as the boys called it, was both a punishment and a ch.o.r.e. Back and forth across the wooden floors of the dormitories and hallways Gordon lugged the covered wood. Rope rubbing the floors of the upstairs rooms, Gordon could look down into an exercise yard and see the less fortunate inmates of the inst.i.tution that staff members once divided into aidiotsa (intelligence quotient less than 20), aimbecilesa (IQs of less than 50), and amoronsa (IQs over 50). They moaned to themselves and chugged in endless circles, their hands on the shoulders of the person in front of them.2 Seven times Gordon had wriggled under the barbed-wire fence and run toward home, a place that in his childas mind still represented warmth and security despite its total chaos. His escapes usually lasted until dark. He was afraid of the dark, and when night came on, he turned himself in to the local police. A state car was dispatched from Fernald to bring him back to the inst.i.tution. aYouare a state boy, Gordon,a Malcolm J. Farrell, the school superintendent and physician, would tell him. an.o.body wants you. Youare gonna die here.a Still haunted by the murky dark rooms, the smells, the human suffering he witnessed, Gordon began to believe it. aIt was like a Hitler camp, I tell you,a he said.

Into this dreary march of days came the Science Club. The name alone conveyed the kind of belonging unwanted boys such as Gordon yearned for. The brainchild of scientists from the Ma.s.sachusetts Inst.i.tute of Technology, the Science Club offered Gordon and his young friends a legal way to escape from the hated inst.i.tution for a few hours. The youngsters were taken to the beach, to ball games at Fenway Park and Christmas parties at the MIT faculty club. They got Mickey Mouse watches and armbands that showed they were wanted. But these werenat the kind of boys who got something for nothing. In return for the trips and the trinkets, the boys had to eat the specially prepared oatmeal scooped into their bowls each morning. They also had to submit to X rays and blood tests and collect their urine and stool samples in special containers for the scientists. The Science Club, they would learn many years later, was never designed to a.s.suage their loneliness. It was part of a scheme concocted by MIT scientists to get the boys to partic.i.p.ate in their radiation experiments.

Like Paul Hahn and his colleagues in Tennessee, researchers in Ma.s.sachusetts had readily embraced the use of radioisotopes. Robley Evans, the founder of MITas Radioactivity Center, and one of the worldas experts on radium poisoning, was closely involved in overseeing the preparations for experiments at the school.

Between 1946 and 1953, seventy-four Fernald boys were used in experiments in which trace amounts of radioactive iron or calcium were mixed into their oatmeal.3 The function of the initial experiments was to find out whether phytatesa”chemicals found in cereals that can combine with iron and calcium to form insoluble compoundsa”were robbing the children of important minerals. The oatmeal was scooped out of square metal pans into the boysa bowls. Then the milk, foamy and cold, was poured over the cereal. Sometimes the radioactive isotopes were mixed into the cereal and sometimes they were mixed into the milk. The scientists had impressed upon the attendants how important it was that the boys clean their bowls. aYou had to drink the milk. That was the thing,a Gordon remembered. There was nothing unique about the MIT study at Fernald. Indeed, the school had been a veritable laboratory for medical researchers from nearby Boston for many years.

Founded in 1848 by Samuel Gridley Howe, Fernald was the first permanent school for the afeeble-mindeda in North America.4 Howe was a social reformer who named one of his children after his good friend Florence Nightingale, and was guided through the prisons and inst.i.tutions of England by none other than Charles d.i.c.kens.5 His wife was Julia Gridley Howe, a famous suffragette and outspoken opponent of slavery.6 Edward W. Emerson, the physician son of Ralph Waldo Emerson, at one time was a member of the schoolas board of trustees.7 Howe believed that r.e.t.a.r.ded children could be rehabilitated through education, fresh air, and work. But as the decades pa.s.sed and the political climate changed, the inst.i.tution evolved into a very different kind of school from the gentle learning environment Howe had envisioned. Civil servants replaced the high-minded reformers. The long periods of prayer and cla.s.sroom lessons shrank to a few desultory hours per day. The goal was no longer to help the mentally r.e.t.a.r.ded but to protect society from them. Walter E. Fernald, a respected figure in psychiatry and superintendent for whom the school eventually was renamed, ill.u.s.trated the harsh sentiments of the era in a speech: The social and economic burdens of uncomplicated feeble- mindedness are only too well known.8 The feeble-minded are a parasitic, predatory cla.s.s, never capable of self-support or of managing their own affairs. The great majority ultimately become public charges in some form. They cause unutterable sorrow at home and are a menace and danger to the community. Feeble-minded women are almost invariably immoral and if at large usually become carriers of venereal disease or give birth to children who are as defective as themselves.a Every feebleminded person, especially the high-grade imbecile, is a potential criminal, needing only the proper environment and opportunity for the development and expression of his criminal tendencies.a In addition to the mentally handicapped, Fernald also became a dumping ground for troublesome children and adults deemed unacceptable by society or the Ma.s.sachusetts courts. Prost.i.tutes and alcoholics, adeviants and defects,a children from large immigrant families, and even youngsters found by the judiciary to be too stubborn were s.h.i.+pped to Fernald.9 In the early twentieth century, as scientific research into the causes and treatment of amental diseasesa began to expand, doctors and scientists from the ivy-covered schools in Boston began to take an interest in the disabled residents living in the inst.i.tution twenty to twenty-five miles away. Here was an ideal populationa”a captive populationa”that could be studied in detail. Here were humans suffering from such rare physical deformities and diseases that they were regularly paraded before photographers who snapped their pictures for medical textbooks. The diversity and range of ailments was so great that researchers began referring to the brick inst.i.tution as the azoo.a A laboratory was set up in one of the buildings.10 Downstairs was the morgue where autopsies were performed and human organs stored in jars of formaldehyde. Two air-conditioning repairmen inadvertently discovered several aartifactsa from that era on a summer day in June 1986 in a storage room at what is now called the Eunice Kennedy Shriver Center on the grounds of the Fernald campus.11 In the unused storage room, the repairmen found two enamel cooking pots eleven inches wide and nine inches high. On the lid of one of the crocks, which was caked with dust and aold brown spatters,a the word aPedroa was written in orange grease paint. Inside was a decapitated human head in formalin solution. The head was covered with gray and brown scalp hair about one inch long. All the upper teeth were missing and a stubbly beard covered the face. The other crock, labeled as.e.xto,a also contained a human head.