Part 16 (2/2)
This brings us to another important area. Most vaccines would require good delivery and storage mechanisms. They lose their effectiveness or potency when not stored at particular, often low, temperatures. So as with milk or fruit, we need good refrigerator or chilling systems to enable the vaccines to reach Villages. Also, how do we ensure that the vaccines have indeed been Stored at proper temperatures through various phases of Handling, from the factory in which they are manufactured unto the point of the consumer? Here too there are Technologies to help us keep control. There are thermal sensitive Paints, which can change color a strip of such paint can be put on the medicine or vaccine cover. If the instructions Regarding the exact temperature and permissible time without Refrigeration are violated, the color will be change irreversibly.
Fortunately, in India there are groups working on vaccines and irreversible thermal sensitive paints. But when it comes to Stable and reliable electric power supply to the 203.
rural areas and Towns, enabling the operation of good chilling systems in the Rural areas, one is a.s.sailed by doubts.
A reliable refrigeration system presumes a stable supply of electric power. Electric power is a vital component for operating most machines. The entire electronics industry depends on it through moderndays system consume less and less electric power for greater performance. It is time we as a nation learn to appreciate the importance of electric power for industry. The power crisis in the power sector cannot be allowed to Continue. In our march towards becoming a developed country, we need to drastically transform our electric power operations. It is not merely for agriculture or industry, but for the very health of our people. What this suggests is the importance of interlink ages.
In the past few decades, many government departments, agencies and individuals have began to function autonomously. The concept of selfreliance should be for the country as a whole, not for departments, agencies or individuals alone! But in India, many of the agencies do not see beyond their allocated areas. Someone concentrate on the purchase of a vaccine another on development another 'deals with' distribution without trying to understand the special character of the item to be distributed. There is enough ' paper work' to protect everybody. 'I have done my task' the representative of any department might say. Of course there are also problems in such a system for those initiative. On the pretext of Coordination many irrelevant questions are raised and often months pa.s.s before a decision is taken. We have heard many sincere people telling us that they have sent detailed proposals with specific linkages spelt out to the department concerned in Delhi or the state capital. Often Delhi has something to say even the proposals are sent to the state capital. It may take three to six years for the proposals to be cleared often the Clearance comes after the subject matter has become partially or fully obsolete.
If we want to achieve a developed India, we have to learn to get out of this pitiable state of inaction. If laws, rules and procedures have to be changed, this should be done.
The rate at which technologies offer new solutions and new windows of opportunity is fortunately very high in the current phase of human development. We can make up the lost time and missed opportunities, provided we learn to move fast. Such opportunities 204.
are not waiting around for us. Others grab them. We need to think holistically and innovatively, and not in our closed compartments. And above all, we need to learn to act Fast and protect those who make genuine mistakes. Failure is a part of any venture! The authors can cite from their experience of three missionoriented organizations: the department of Atomic energy, the Indian s.p.a.ce research organization and The Defense research & development organization, which have projectoriented management for time bound achievements in high technology, and also their societal application. Defense Lasers can be used surgically to treat glaucoma or cataract. Atomic energy is used for irradiating, for example, groundnut seeds for higher productivity and s.p.a.ce research has led to an accurate prediction of the onset of the monsoon. The unique characteristic of all these three departments is that their scientists are not afraid of taking decisions and above all are not afraid of failures. But they have indeed succeeded, thanks to visionaries Like Dr Homi Bhabha, Prof Vikram Sarabhai, Prof Satish Dhawan and Dr Nag Chaudhri For example, satellite remote sensing offers a medium to Map out areas where mosquitoes breed or such areas from which other diseases can spread. There have been a few successful experiments over limited areas. We have our remote sensing satellite whose data is being sold commercially worldwide. We have many experts in remote sensing applications! Many entrepreneurial scientists and technologists have started small companies and provide services even to foreign clients. Why don't we deploy these talents to benefit the country as a whole, in the big battle ahead to combat diseases? We are aware that satellite mapping alone cannot solve all problems. It can monitor, and present a quick picture and help us to develop micro plans. Similarly, there are other tools. Also there may be several source of local knowledge available with our tribal communities or village elders about the control of vectors. Why not deploy this after a quick study? DRDO had an interesting experience in the northeastern state Of a.s.sam, where the organization has a Defense Research Laboratory especially devoted to preventing malaria and its treatment. It is a small laboratory with less than fifty members.
It has been established to keep our armed forces healthy. This laboratory has done something unique in health care. It has characterized the vector of the mosquito prevalent in that region based on their own medical knowledge and the experience of the local people. The laboratory, in turn, has treated the people in the villages and helped them to be free of malaria.
205.
TABLE 10.1.
Estimated and Projected Mortality Rates (per 100000) by s.e.x, For Major Causes of Death in India Causes year ________________________________________________________.
1985.
2000 2015.
_____________ ______________ _______________.
M F M F M F.
All causes 1158 1165 879 790 846 745 Infectious 478 476 215 239 152 175.
Neoplasm 43 51 88 74 108 91 Circulatory 145 126 253 204 295 239.
Pregnancy _ 22 _ 12 _ 10 Prenatal 168 132 60 48 40
30.
Injury 85 65 82 28 84 29 Others 239 293 280 285 167 171.
Source: World Bank Health Sect oral Priorities Review Noninfectious diseases Let us now address noninfectious diseases, some of which are considered 'developed country' (posttransitional) diseases! Since these diseases are significant in developed countries, there is also a vast knowledge base utilized to tackle them. Heart diseases are perceived to be the ones, which will receive major attention for many years to come.
Urbanization and altered lifestyles are indicators of socioEconomic development and lead to risk factors for cardiovascular diseases (CVD). At present, pretransitional Diseases like rheumatic heart diseases, mostly the problem of the poor, coexist as a major cardiovascular diseases along with posttransitional diseases such as coronary heart disease and Hypertension. In India nearly 2.4 million deaths are caused by cardiovascular disorders. Smallscale communitybased studies indicate the prevalence of CVD in adults, ranging from 26 percent in rural and 610 per cent in urban areas. The health Sector review of the World Bank projects that CVD mortality Rates would double between 19852015 (table 10.1) Studies of overseas Indians in many countries reveal excess coronary mortality in persons of Indian origin. These studies conducted in several countries and involving different generations of migrants from India/South Asia suggest a 206.
special susceptibility to CVD as persons of Indian origin face the challenges of epidemiological transition. When a community's status changes from being poor to affluent, both genetic, environmental and perhaps nutritional factors appear to play a role in the special vulnerability of people of a particular community, in this case of Indian origin. Other factors include the stresses due to living in a different cultural setting.
Experts believe that an epidemiological transition is therefore likely to result in a major CVD epidemic in India.
It is critically important to develop relatively inexpensive diagnostic aids for detecting coronary heart diseases (CHD). These include ECG (electrocardiogram), stress ECG, nuclear cardiology, echo cardiology, halter monitoring and cardiac catheterization with coronary angiographies. Technologies like magnetic resonance angiographies of the coronary arteries are still under investigation. ECG records and simple stress equipment are manufactured in India and are easily available. However, if the diagnostic facilities have to be extended to the primary care (ECG) and secondary care (stress ECG) levels, in Response to the coronary epidemic, their manufacture in larger numbers and reduced cost per unit would be necessary. Medical therapy of CHD may involve antiangina drugs (nitrates, calcium channel and beta blockers), ant.i.thrombosis agents (aspirin, Heparin, etc), ACEinhibitors, thrombolytic agents (streptokinase, urokinase, etc) and antioxidants. Primary health care centers are not presently geared to provide emergency Care. Development of treatment protocols for CHD and training of appropriate manpower at primary levels need to be taken up on a priority basis. Let us remember that CHD and CVD is not merely the problem of the very top strata, of a few tens of millions.
(No doubt this strata cannot only afford private treatment in India but also afford periodic checkups and treatment in the UK and USA. It is sad to note that this strata have confidence only in foreign facilities, despite the presence of experts doctors in India and all such imported equipment with which foreign returned Indian specialists are operating worldcla.s.s facilities!) CVD and CHD are going to become a common illness, from the lower to the upper middle cla.s.s and even among many rural people. Therefore, it is not a disease of the affluent it is a disease, which may also attack many Indians, who have just marginally escaped death from serve infectious diseases or nutritional disorders. The Kalamraju stent, used to prevent arteries from closing up, was one such attempt to target 207.
the treatment of this group. We need many more measures for diagnosis. Since most primary health centers (PhDs) may not have access to excellent specialists, advances in modern communication and information technologies also would need to be deployed innovatively to provide such taleaccess (that is, access at a distance). Most readings of the diagnostic equipment, ECG or others are electrical signals. These can be transmitted to the specialists in a very economical form with modern digital technologies. The opinion and advice of the specialists can be retransmitted to the PHC. We understand that many of those who operate costly nursing homes in cities would be willing to provide such advisory services at a nominal cost as a part of their contribution to society. Let us try many such methods to reach out to people. In addition, the advice of specialists regarding dietary habits exercises and practices for mental stress relief (including yoga) may have to popularize in the media.
Another CVD, which is prevalent now in India and arises mostly due to poverty or neglect of illness at a young age, is rheumatic heart disease (RHD). It is a major cause of Cardiovascular morbidity and mortality. The prevention of RHD requires early diagnosis and prompt treatment of streptococcal pharyngitis, especially in children aged 516 years.
Through a streptococcal vaccine is under investigation, clinical trails are yet to take shape. A multivalent, noncross reactive, long lasting and inexpensive vaccine would be idle for prophylaxis, but does not appear to be feasible. Secondary prophylaxis with penicillin is an available technology whose compliance needs to be improved. Clinical trails on the efficacy of immunomodulatory therapy for rheumatic fever are required.
While balloon valvoplasty and surgery are presently available at sot tertiary centers, the equipments and disposals are mostly imported. Indigenously developed prosthetic values must be Promoted and technologies for production of indigenous equipment and disposables must be developed. On all these fronts, given targets and good organization, India can easily Measure up to the problem. Other noncommunicable diseases such as diabetes may be a cause for concern. About 510 per cent of the population in India suffers from diabetes. Preventive measures include genetic counseling and dietary and lifestyle counseling. Blood glucose detecting devices have been simplified and miniaturized. However, a high running cost and the need for changing the Equipment are limiting factors. Standardized glucose measuring 208.
Projected Number Of Cancer Incidences In India Cancer site Year _____________________________________________________________________.
2000 2020.
2021.
__________.
___________.
__________.
M F M F M.
F.
_____________________________________________________________.
_____________________________________________________________.
_____________________________________________________________.
_______.
Oral cavity 44875 23670.
59560 24515 75299.
24261.
<script>