Part 15 (2/2)

India 2020 A.P.J. Abdul Kalam 182870K 2022-07-22

The development and production experience Of Pith India had certain strengths in design, materials and engineering when the project was initiated in 1983. However, the development of Pith required aeros.p.a.ce quality materials like magnesium alloys for wings and certain special aluminum alloys for airframe and tank ages, and navigational sensors of a certain accuracy, all of which were not available within the country. The Missile Technology Control Regime, though not formally declared, was in effect in some from or the other. All these drove us to deliberately adopt an indigenous route right from the beginning. Harnessing the available talents within the country and using innovative management methods developed a number of critical technologies, materials and processes. The development of the Pith Inertial Navigation system is an example of this. Though we were able to get only the coa.r.s.e cla.s.s of sensors for the inertial navigation, our scientists came up with innovations to enhance their accuracy using software. The use of simulation in the design phase, and the hardware in loop simulation to fly the missile on ground, as well as the a.s.sociation of users at every stage, greatly helped in improving the effectiveness of the missile and reduced the number of user trials.

Throughout, the project was driven by goals of excellence in performance and of meeting schedules. Concurrency was built into every activity of the programmed to reduce the time from development to induction.

Aside from strengthening the country to face the threats from across our borders.

Pith has demonstrated that India can develop worldcla.s.s high technology systems and devices by using its own indigenous strength, and thereby defeating the control regimes. An important benefit of the Pith programmed is the new breed of technologists and leaders, who can make our country stronger and selfreliant.

Light Combat Aircraft (LCA) One of the largest programmers of the DRDO is the Light Combat Aircraft (LCA). It has got all the potential elements of high technology thirtythree R&D 184.

establishments, sixty major industries and eleven academic inst.i.tutions are integrated and working together on this project.

There are two types of fighter aircraft, Light Combat Aircraft and the Medium Combat Aircraft. The Medium Combat Aircraft weighs about 15 tones at takeoff, whereas the Light Combat Aircraft has below 10 tones takeoff weight. This new generation aircraft has primary structures made of composite materials and advanced avionics. The LCA has technologies of based mission computer, low RCS, high weapon carrying capability, high maneuverability powered by a uniquely designed 'knavery' engine. The LCA design caters for topcla.s.s maneuverability and high performance. In addition, its mission capability and survivability characteristics will be superior to those of the heavier aircraft that would come into the market within the next few years. The LCA will be the most costeffective aircraft in relation to performance considering the fact that our R&D cost is onethird of that of the developed countries for similar programmers. The LCA tops the lightweight fighters in its capabilities with the unique feature of fulluser commitment. The LCA can be marketed at much lower cost than the combat aircraft of similar cla.s.s.

DRDONavy partic.i.p.ation Let us look at a few other cases of building up a strategic technological strength. During 1995, in the Bay Bengal , despite rough weather conditions, our defense scientists and engineers from Bart Electronics Limited (BEL) worked with a naval team on a s.h.i.+p to commission the modified electronic warfare system for user trials. In handiworkatsea, in stormy conditions, DRDO aeronautical and electronics engineers engaged in the final phase of user trials of Pilot less Target Aircraft (PTA) 'Flashy' for the three services. Also during 1995 we had a successful flight of the PTA whose jet engine was designed and developed within the country.

The naval s.h.i.+ps gave full support in this mission for deploying the simulated missile to encounter IR targets fitted with the PTA. An experimental laboratory on the sea, Sagardhwani, sailed from the west to the east coast with a mission of characterizing the ocean depth with particular reference to temperature gradient .

185.

Another exciting achievement of the Navy is imminent. Work has been completed for the stateoftheart submarine sonar, Panchendriya, by the Naval Physical and Oceanography Laboratory (NPOL) situated on the western coast. The new s.h.i.+ps being built will be armed with our Trishul missile system and the hullmounted sonar Hamsa. It will have its first Modulated Data Bus, which is mostly linked by fiber optics. The Government has also approved the Naval Integrated Electronic Warfare programmed (NIEWP). In four years, s.h.i.+ps, submarines and naval aircraft would be provided with the latest electronic surveillance system coupled with electronic counter measures.

Action plan for the Army Strategic technological action by the Army has been equally exemplary. Phased induction of various system and equipments needs to be linked and dovetailed with the defense selfreliance plan. This is a sure way for Indian industries to achieve the goals and the direction for preparing the business plan and for ensuring partic.i.p.ation. Likewise, the dependence of our armed forces on imported systems needs to progressively decrease.

Also, as is done elsewhere, India has to follow the induction of products in phases like Mark I, Mark II, etc. so that technology capability and production infrastructure are built in a phased way. This situation will cut down the delay of systems readiness.

Technological uncertainty will be removed and willing investment by industries may be possible. The industries should be given a clear mandatewill they be developers? Will they be fabricators of an integrated system house and for what possible areas? Once this policy is enunciated industry can fully partic.i.p.ate, as the financial aspects would be clear.

Recently the DRDO opened seven of its laboratories for industries to pick up technologies already developed. These industries have to shape the technologies for commercial application.

User trials of the systems developed are an important part of their induction by the armed forces. Normally, user trials pose a big challenge for the R&D and the industrial establishments. We are no exception. But the outcome of this exercise could help the country to become independent and selfreliant. If the Army has to gain in selfreliant.

Rethinking is required in its plans of user trials and also of the mission requirements. In view of the onset of the performance evaluation through extensive combined 186.

environmental simulation, would it be possible to plan for reduced scale user trial tests for high alt.i.tude, and desert conditions? This will result in industries moving over to series production within a short time followed by fullscale production for domestic and international markets. Of course, a series of technological and military considerations would be vital for taking such decisions.

The future The above has given a glimpse of defense research and its interface with operational systems. Future defense operations are going to be based on multiple networks of Army, Navy, Air Force and s.p.a.ce systems. Information technology is going to be used in unprecedented ways, in the planning stages, in various simulation exercises, as well as during actual operations when the need arises. Continual surveillance is going to be another feature in the years to come. This is done through remote sensing, communications and several other means. Continual improvement of systems with higher precision, speed and maneuverability would also be a part of this complex picture.

Advances in materials, electronics, advanced sensors information processing, robotics, and artificial intelligence drive all the critical elements.

Advanced sensors Advanced sensor technology has been identified the world over as one of the critical technologies for the future. Advanced sensors require ultrapure materials and ultraclean manufacturing conditions. Integrated electronic devices are using micro sensors on surface mounted devices. Advanced sensors will be used in every segment of human endeavor covering, agriculture, health services, advanced manufacturing systems, advanced avionics, optical communications, s.p.a.ce satellites, super smart highways, biotechnology, genetic engineering, pollution control, diagnostics and so on. Molecular and supramolecular systems for sensing and actuation are creating new sensors capable of measuring physical, chemical and biological parameters. In view of the strategic importance of sensors for industrial, aeros.p.a.ce and health applications, it is necessary to have a national mission on advanced sensors. We will lose out in all areas including agriculture or trade if we do not have sufficient national capability in sensors, since quality improvement, productivity enhancement and enforcement of standards will 187.

require use of advanced sensors. Environmental monitoring is another area based primarily on sensors continually looking at the quality of air, land and water.

A detailed a.s.sessment of the state of the art of advanced sensors indicates that the following are major technological trends.

Development of intelligent or smart sensing devices .

Emergence of integrated multifunctional sensors .

Smart sensors systems capable of performing integration self compensation and self correction .

Sensors integrated with actuators, and .

Development of artificial noses, which can create olfactory images, i.e.

sensors, can smell and quantify the smell!

It is estimated that the worldwide demand for sensors was of the order of $ 5 billion in 1994 USA has about 55 per cent share of the world market. And a.n.a.lysis of the world market for sensors indicate that industrial control, medical and scientific instruments account for 50 per cent of the global market of a sensors. Temperature sensors account for 36 per cent Pressure sensors 34 per cent and flow sensors 28 per cent of the world demand. The world market for chemical and bio chemical sensors is rapidly growing and this is one of the emerging end use applications. The demand for sensors in India will be about Rest. 500 million in 2000 and the dominant use will be in industrial control and automation applications. In spite of the fact that it is strategically important for industrial and defense applications, India has a negligible presence in the advanced sensors market, even in the use of sensors, not to mention in their manufacture and development.

Though there are a large number of inst.i.tutions active in sensors development programmers in India, most of them have not as yet aimed their efforts at a specific product or service. There is no programmed which is oriented towards industry or the health sector. A number of organizations have strong capabilities in one or other element or sensors: for example, for material development or sensor element development or sensor device integration. Their needs to be a sharper focus for the sensors programmed besides closer networking and a joint development 188.

programmed. Perhaps national teams, as is being done for LCA, could be a model to follow.

National programmed in advanced sensors India has to mount a sharply defined national programmed on advanced sensors. If India has to become a major player in advanced sensors there has to be comprehensive national mission implemented in the consortia mode. Several disciplines have to be integrated into developing focused product. Among the new capabilities required are microfabrication and manufacture. All application segments of advanced sensors need special attention with specific focus on market development.

The mission may be implemented through the existing inst.i.tutions or through the new mechanism. However, the mission has to be very clearly defined and it has to be enduse oriented. It is preferable, if industries take a lead in this mission. Unless India has strong national capabilities in advanced sensors we may lose out in all areas to newly industrializing countries, since both industrial compet.i.tiveness and trade compet.i.tiveness are going to depend upon the capabilities in advanced sensors. In future, the compet.i.tive edge in the manufacturing sector as well as in services is going to be greatly determined by the large scale use and innovative applications of sensors. Tables 9.2 and 9.3 provide a glimpse of some of strategically and industrially important sensors. It is crucial India develops major industries in these areas, with commercial level operations in the domestic and foreign markets. Let us now look at a few examples of s.p.a.ce systems, which would from a core of strategic sector industries.

Cryogenic engine for GSLV For the satellite launch vehicles, allsolid multistage rocket systems or solid plus liquid multistage rocket systems or all liquid multi stage rocket systems can be used. The cost per launch in is a way controlled by the takeoff weight of the launch vehicle system for a given payload and type of orbit enquired. The costeffectiveness in commercial 189.

launch Vehicles, that is, the cost of injecting a satellite into a geo stationary orbit will decide the choice of the propellant system for individual TABLE 9.2.

Strategically Important Sensors Area Sensor to be developed Trends Action needed Inertial sensors for a) Laser gyros Development of ultra Navigation and avionics noisefree and stable b) Fiber optic gyro lasers Development of Sensors for submarine c) Micro accelerator integrated optic detections SQUID based chips surface micro systems machining Strategically Sensors for detecting Combining nuclear SQUID sensors for important explosives such as RDX and magnetic resonance sensing ultra and sensors narcotics weak electro magnetic fields nuclear quadruple arising from nuclear magnetic resonance (NMR)/nuclear quadruple resonance (NQR) resonance principles Piezoresistive micro sensors Surface micro Development of machining of poly monolithic silicon silicon micro transducer including structures signal conditioning and calibration.

TABLE 9.3.

Sensors needed for Industrial Applications Area Sensor to be Trends Action needed developed Humidity sensors Polymer electrolytic, Humidity sensors heat treated polymer using changes in dielectric, inorganic permitivity and substance distributed resistance needed to polymer (change in be developed. This resistance due to will require first humidity absorption) development of sensors material and 190.

related electronic circuitry Cellulose system Metal oxide silicon polymer (change in field effect permitivity) transistor (MOSFET) using humidity absorption polymer to be developed Industrial Carbon particle process control distributed humidity and safety absorption resins (sharp changing resistance with absorption of humidity) Area Sensor to be Trends Action needed developed MOSFET + humidity Surface acoustic absorption polymer wave sensors to be (change in characteristics developed of transistor) Quartz oscillator + polyamide (change in load of oscillator) Gas sensors for Organic semiconductor process control (Increase in conductivity due to adsorption of gas) Coloring matter membrane LB membrane (fluorescence quench) Quartz oscillator + organic thin film (change in load on vibrator) Gas transmission polymer membrane + electrode (selective permeation of gas, electrochemical reaction) Area Sensor to be Trends Action needed developed 191.

Sensors for Artificial noses Development of monitoring toxic multicomponent gases molecular recognition systems Industrial process Inductive proximity Noncontact metal Development of control and safety sensors detection sensors proximity sensors with wide operating and sensor range and fast alignment response techniques Semiconductor Lightemitting Light source and displacement laser diodes or position sensitive sensors semiconductor laser detector based sensors development Stages. Normally, a liquid rocket system will be of a lower weight and with a cryogenic upper stage further weight reduction is achieved.

For example, to place a 2.5ton payload in a geotransfer orbit, an allsolid multi stage launch vehicle will have a talkoff weight of 525 tons. This will reduce to 470 tons if the liquid stage replaces the solid upper stages. It will further reduce to 450 tons with allliquid stages and eventually to less than 300 tons when a cryogenic engine replaces the upper stage. The major differences in takeoff weight are evident. It is said in the s.p.a.ce community that for every addition kilogram of payload, a few lakes of rupees when utilizing the cryogenic engine will reduce the cost. The propellant used in the cryogenic engine is a combination of liquid oxygen and liquid hydrogen in specific ratios. The proposed cryogenic engine for India's Geosynchronous Satellite Launch Vehicle, GSLV is of 12ton thrust cla.s.s. The engine weighs only 250 kg and has a length of 3.1 meters.

The engine has to be very compact with proper insulation, regenerative cooling and sealing for handling liquid oxygen and hydrogen.

The engine has to be closely coupled to the tank ages and flow control devices to form the upper stage. The propellant loading, transfer, insulating and pressurizing systems are integration into one integral system for modular handling and operation. The technological challenges in realizing this stage are many. The materials selected have to work at minus 253 Celsius as well as at high temperatures of 1750 Celsius continuously. The nozzle and thrust chamber have to be regenerative cooled using the liquid hydrogen itself. For the liquid hydrogen turbo pump, speed has to be maintained 192.

above 50000 revolutions per minute (rpm). Compare it with the revolutions of your motorcar engine, which is 5000 rpm, and of a commercial jet aircraft engine, which is almost 15000 rpm. Considering the fabrication, material technology, which is sealing, bearing, insulating technologies and the process of making the various cryogenic sub system, the country has yet to develop all these and our industries and R& D laboratories have to work together for this important task. A design and manufacturing database has to be established so that no country can come in the way of our s.p.a.ce programmers. In this context, it is essential to note that cryogenic engines cannot be used for any missile application as their storage life is limited, the filling operations can be sensed in advance and no mobility is possible. The argument that cryogenic engines can be used for missiles, Quoting Missile Technology Control Regime, is nontechnical and commercially motivated.

Where are we in aero propulsion?

Where are we in aero engines and propulsion? India with its LCA programmed is now developing a uniquely configured GT engine as described earlier. Similarly, for GSLV, India has to develop within Schedule, a cryogenic engine and stand on its own it's feet in the area of satellite launching. It can be seen that in both these areas we are lagging behind the developed countries because we did not feel their importance, given the level of aeros.p.a.ce technology mission taken up in the country in the past. Today, the priority given to commercial and military aircraft as well as GSLV, cryogenic engines and jet engines has become vital. Bridging the gap in technologies, to become a part of the leaders in the game is not an impossible, to task. The partners.h.i.+p between our inst.i.tutions and industries can accelerate development and our technology acquisition. It will also help tailor the technology acquired to our infrastructure and needs. It can be seen that with the launch of polar Satellite Launch Vehicle (PSLV), we are almost at par with the developed countries in the area of solid propellant power plants. The PSLV has also established the technologies of storable liquid propellants and related propulsion.

Hyper planes of the future DRDO has entered into ram rocket systems where much higher energy levels (of above 500 sec with solid propellants and unto 1000sec with liquid propellants) ill be realized.

193.

<script>