Part 7 (1/2)
In the general design and beauty of workmans.h.i.+p involved in the construction of aeroplanes, Britain is now quite the equal of her foreign rivals; even in engines we are making extremely rapid progress, and the well-known Green Engine Company, profiting by the result of nine years' experience, are able to turn out aeroplane engines as reliable, efficient, and as light in pounds weight per horse-power as any aero engine in existence.
In the early days of aviation larger and better engines of British make specially suited for aeroplanes were our most urgent need.
The story of the invention of the ”Green” engine is a record of triumph over great difficulties.
Early in 1909--the memorable year when M. Bleriot was firing the enthusiasm of most engineers by his cross-Channel flight; when records were being established at Rheims; and when M. Paulhan won the great prize of L10,000 for the London to Manchester flight--Mr. Green conceived a number of ingenious ideas for an aero engine.
One of Mr. Green's requirements was that the cylinders should be made of cast-steel, and that they should come from a British foundry. The company that took the work in hand, the Aster Company, had confidence in the inventor's ideas. It is said that they had to waste 250 castings before six perfect cylinders were produced. It is estimated that the first Green engine cost L6000. These engines can be purchased for less than L500.
The closing months of 1909 saw the Green engine firmly established.
In October of that year Mr. Moore Brabazon won the first all-British compet.i.tion of L1000 offered by the Daily Mail for the first machine to fly a circular mile course. His aeroplane was fitted with a 60-horse-power Green aero engine. In the same year M. Michelin offered L1000 for a long-distance flight in all-British aviation; this prize was also won by Mr. Brabazon, who made a flight of 17 miles.
Some of Colonel Cody's achievements in aviation were made with the Green engine. In 1910 he succeeded in winning both the duration and cross-country Michelin compet.i.tions, and in 1911 he again accomplished similar feats. In this year he also finished fourth in the all-round-Britain race. This was a most meritorious performance when it is remembered that his Cathedral weighed nearly a ton and a half, and that the 60-horse-power Green was practically ”untouched”, to use an engineering expression, during the whole of the 1010-mile flight.
The following year saw Cody winning another Michelin prize for a cross-country compet.i.tion. Here he made a flight of over 200 miles, and his high opinion of the engine may be best described in the letter he wrote to the company, saying: ”If you kept the engine supplied from without with petrol and oil, what was within would carry you through”.
But the pinnacle of Mr. Green's fame as an inventor was reached in 1913, when Mr. Harry Hawker made his memorable waterplane flight from Cowes to Lough s.h.i.+nny, an account of which appears in a later chapter. His machine was fitted with a 100-horse-power Green, and with it he flew 1043 miles of the 1540-miles course.
Though the complete course was not covered, neither Mr. Sopwith--who built the machine and bore the expenses of the flight--nor Mr. Hawker attached any blame to the engine. At a dinner of the Aero Club, given in 1914, Mr. Sopwith was most enthusiastic in discussing the merits of the ”Green”, and after Harry Hawker had recovered from the effects of his fall in Lough s.h.i.+nny he remarked in reference to the engine: ”It is the best I have ever met. I do not know any other that would have done anything like the work.”
At the same time that this race was being held the French had a compet.i.tion from Paris to Deauville, a distance of about 160 miles. When compared with the time and distance covered by Mr. Hawker, the results achieved by the French pilots, flying machines fitted with French engines, were quite insignificant; thus proving how the British industry had caught up, and even pa.s.sed, its closest rivals.
In 1913 Mr. Grahame White, with one of the 100-horse-power ”Greens”
succeeded in winning the duration Michelin with a flight of over 300 miles, carrying a mechanic and pilot, 85 gallons of petrol, and 12 gallons of lubricating oil. Compulsory landings were made every 63 miles, and the engine was stopped. In spite of these trying conditions, the engine ran, from start to finish, nearly nine hours without the slightest trouble.
Sufficient has been said to prove conclusively that the thought and labour expended in the perfecting of the Green engine have not been fruitless.
CHAPTER XXIV. The Wright Biplane (Camber of Planes)
Now that the internal-combustion engine had arrived, the Wrights at once commenced the construction of an aeroplane which could be driven by mechanical power. Hitherto, as we have seen, they had made numerous tests with motorless gliders; but though these tests gave them much valuable information concerning the best methods of keeping their craft on an even keel while in the air, they could never hope to make much progress in practical flight until they adopted motor power which would propel the machine through the air.
We may a.s.sume that the two brothers had closely studied the engines patented by Daimler and Leva.s.sor, and, being of a mechanical turn of mind themselves, they were able to build their own motor, with which they could make experiments in power-driven flight.
Before we study the gradual progress of these experiments it would be well to describe the Wright biplane. The ill.u.s.tration facing p. 96 shows a typical biplane, and though there are certain modifications in most modern machines, the principles upon which it was built apply to all aeroplanes.
The two main supporting planes, A, B, are made of canvas stretched tightly across a light frame, and are slightly curved, or arched, from front to back. This curve is technically known as the CAMBER, and upon the camber depend the strength and speed of the machine.
If you turn back to Chapter XVII you will see that the plane is modelled after the wing of a bird. It has been found that the lifting power of a plane gradually dwindles from the front edge--or ENTERING EDGE, as it is called--backwards. For this reason it is necessary to equip a machine with a very long, narrow plane, rather than with a comparatively broad but short plane.
Perhaps a little example will make this clear. Suppose we had two machines, one of which was fitted with planes 144 feet long and 1 foot wide, and the other with planes 12 feet square. In the former the entering edge of the plane would be twelve times as great as in the latter, and the lifting power would necessarily be much greater. Thus, though both machines have planes of the same area, each plane having a surface of 144 square feet, yet there is a great difference in the ”lift” of the two.
But it is not to be concluded that the back portion of a plane is altogether wasted. Numerous experiments have taught aeroplane constructors that if the plane were slightly curved from front to back the rear portion of the plane also exercised a ”lift”; thus, instead of the air being simply cut by the entering edge of the plane, it is driven against the arched back of the plane, and helps to lift the machine into the air, and support it when in flight.
There is also a secondary lifting impulse derived from this simple curve. We have seen that the air which has been cut by the front edge of the plane pushes up from below, and is arrested by the top of the arch, but the downward dip of the rear portion of the plane is of service in actually DRAWING THE AIR FROM ABOVE. The rapid air stream which has been cut by the entering edge pa.s.ses above the top of the curve, and ”sucks up”, as it were, so that the whole wing is pulled upwards. Thus there are two lifting impulses: one pus.h.i.+ng up from below, the other sucking up from above.
It naturally follows that when the camber is very p.r.o.nounced the machine will fly much slower, but will bear a greater weight than a machine equipped with planes having little or no camber. On high-speed machines, which are used chiefly for racing purposes, the planes have very little camber. This was particularly noticeable in the monoplane piloted by Mr.