Volume I Part 22 (2/2)

CANTO II. l. 14.

Dr. Alexander Wilson, Professor of Astronomy at Glasgow, published a paper in the Philosophical Transactions for 1774, demonstrating that the spots in the sun's disk are real cavities, excavations through the luminous material, which covers the other parts of the sun's surface.

One of these cavities he found to be about 4000 miles deep and many times as wide. Some objections were made to this doctrine by M. De la Laude in the Memoirs of the French Academy for the year 1776, which however have been ably answered by Professor Wilson in reply in the Philos. Trans. for 1783. Keil observes, in his Astronomical Lectures, p.

44, ”We frequently see spots in the sun which are larger and broader not only than Europe or Africa, but which even equal, if they do not exceed, the surface of the whole terraqueous globe.” Now that these cavities are made in the sun's body by a process of nature similar to our earthquakes does not seem improbable on several accounts. 1. Because from this discovery of Dr. Wilson it appears that the internal parts of the sun are not in a state of inflammation or of ejecting light, like the external part or luminous ocean which covers it; and hence that a greater degree of heat or inflammation and consequent expansion or explosion may occasionally be produced in its internal or dark nucleus.

2. Because the solar spots or cavities are frequently increased or diminished in size. 3. New ones are often produced. 4. And old ones vanish. 5. Because there are brighter or more luminous parts of the sun's disk, called faculae by Scheiner and Hevelius, which would seem to be volcanos in the sun, or, as Dr. Wilson calls them, ”eructations of matter more luminous than that which covers the sun's surface.” 6. To which may be added that all the planets added together with their satellites do not amount to more than one six hundred and fiftieth part of the ma.s.s of the sun according to Sir Isaac Newton.

Now if it could be supposed that the planets were originally thrown out of the sun by larger sun-quakes than those frequent ones which occasion these spots or excavations above-mentioned, what would happen? 1.

According to the observations and opinion of Mr. Herschel the sun itself and all its planets are moving forwards round some other centre with an unknown velocity, which may be of opake matter corresponding with the very antient and general idea of a chaos. Whence if a ponderous planet, as Saturn, could be supposed to be projected from the sun by an explosion, the motion of the sun itself might be at the same time disturbed in such a manner as to prevent the planet from falling again into it. 2. As the sun revolves round its own axis its form must be that of an oblate spheroid like the earth, and therefore a body projected from its surface perpendicularly upwards from that surface would not rise perpendicularly from the sun's centre, unless it happened to be projected exactly from either of its poles or from its equator. Whence it may not be necessary that a planet if thus projected from the sun by explosion should again fall into the sun. 3. They would part from the sun's surface with the velocity with which that surface was moving, and with the velocity acquired by the explosion, and would therefore move round the sun in the same direction in which the sun rotates on its axis, and perform eliptic orbits. 4. All the planets would move the same way round the sun, from this first motion acquired at leaving its surface, but their orbits would be inclined to each other according to the distance of the part, where they were thrown out, from the sun's equator. Hence those which were ejected near the sun's equator would have orbits but little inclined to each other, as the primary planets; the plain of all whose orbits are inclined but seven degrees and a half from each other. Others which were ejected near the sun's poles would have much more eccentric orbits, as they would partake so much less of the sun's rotatory motion at the time they parted from his surface, and would therefore be carried further from the sun by the velocity they had gained by the explosion which ejected them, and become comets. 5. They would all obey the same laws of motion in their revolutions round the sun; this has been determined by astronomers, who have demonstrated that they move through equal areas in equal times. 6. As their annual periods would depend on the height they rose by the explosion, these would differ in them all. 7. As their diurnal revolutions would depend on one side of the exploded matter adhering more than the other at the time it was torn off by the explosion, these would also differ in the different planets, and not bear any proportion to their annual periods. Now as all these circ.u.mstances coincide with the known laws of the planetary system, they serve to strengthen this conjecture.

This coincidence of such a variety of circ.u.mstances induced M. de Buffon to suppose that the planets were all struck off from the sun's surface by the impact of a large comet, such as approached so near the sun's disk, and with such amazing velocity, in the year 1680, and is expected to return in 2255. But Mr. Buffon did not recollect that these comets themselves are only planets with more eccentric orbits, and that therefore it must be asked, what had previously struck off these comets from the sun's body? 2. That if all these planets were struck off from the sun at the same time, they must have been so near as to have attracted each other and have formed one ma.s.s: 3. That we shall want new causes for separating the secondary planets from the primary ones, and must therefore look out for some other agent, as it does not appear how the impulse of a comet could have made one planet roll round another at the time they both of them were driven off from the surface of the sun.

If it should be asked, why new planets are not frequently ejected from the sun? it may be answered, that after many large earthquakes many vents are left for the elastic vapours to escape, and hence, by the present appearance of the surface of our earth, earthquakes prodigiously larger than any recorded in history have existed; the same circ.u.mstances may have affected the sun, on whose surface there are appearances of volcanos, as described above. Add to this, that some of the comets, and even the georgium sidus, may, for ought we know to the contrary, have been emitted from the sun in more modern days, and have been diverted from their course, and thus prevented from returning into the sun, by their approach to some of the older planets, which is somewhat countenanced by the opinion several philosophers have maintained, that the quant.i.ty of matter of the sun has decreased. Dr. Halley observed, that by comparing the proportion which the periodical time of the moon bore to that of the sun in former times, with the proportion between them at present, that the moon is found to be somewhat accelerated in respect to the sun. Pemberton's View of Sir Isaac Newton, p. 247. And so large is the body of this mighty luminary, that all the planets thus thrown out of it would make scarcely any perceptible diminution of it, as mentioned above. The cavity mentioned above, as measured by Dr.

Wilson of 4000 miles in depth, not penetrating an hundredth part of the sun's semi-diameter; and yet, as its width was many times greater than its depth, was large enough to contain a greater body than our terrestrial world.

I do not mean to conceal, that from the laws of gravity unfolded by Sir Isaac Newton, supposing the sun to be a sphere and to have no progressive motion, and not liable itself to be disturbed by the supposed projection of the planets from it, that such planets must return into the sun. The late Rev. William Ludlam, of Leicester, whose genius never met with reward equal to its merits, in a letter to me, dated January, 1787, after having shewn, as mentioned above, that planets so projected from the sun would return to it, adds, ”That a body as large as the moon so projected, would disturb the motion of the earth in its...o...b..t, is certain; but the calculation of such disturbing forces is difficult. The body in some circ.u.mstances might become a satellite, and both move round their common centre of gravity, and that centre be carried in an annual orbit round the sun.”

There are other circ.u.mstances which might have concurred at the time of such supposed explosions, which would render this idea not impossible.

1. The planets might be thrown out of the sun at the time the sun itself was rising from chaos, and be attracted by other suns in their vicinity rising at the same time out of chaos, which would prevent them from returning into the sun. 2. The new planet in its course or ascent from the sun, might explode and eject a satellite, or perhaps more than one, and thus by its course being affected might not return into the sun. 3.

If more planets were ejected at the same time from the sun, they might attract and disturb each others course at the time they left the body of the sun, or very soon afterwards, when they would be so much nearer each other.

NOTE XVI.--CALCAREOUS EARTH.

_While Ocean wrap'd it in his azure robe_.

CANTO II. l. 34.

From having observed that many of the highest mountains of the world consist of lime-stone replete with sh.e.l.ls, and that these mountains bear the marks of having been lifted up by subterraneous fires from the interior parts of the globe; and as lime-stone replete with sh.e.l.ls is found at the bottom of many of our deepest mines some philosophers have concluded that the nucleus of the earth was for many ages covered with water which was peopled with its adapted animals; that the sh.e.l.ls and bones of these animals in a long series of time produced solid strata in the ocean surrounding the original nucleus.

These strata consist of the acc.u.mulated exuviae of sh.e.l.l-fish, the animals perished age after age but their sh.e.l.ls remained, and in progression of time produced the amazing quant.i.ties of lime-stone which almost cover the earth. Other marine animals called coralloids raised walls and even mountains by the congeries of their calcareous habitations, these perpendicular corralline rocks make some parts of the Southern Ocean highly dangerous, as appears in the journals of Capt.

Cook. From contemplating the immense strata of lime-stone, both in respect to their extent and thickness, formed from these sh.e.l.ls of animals, philosophers have been led to conclude that much of the water of the sea has been converted into calcareous earth by pa.s.sing through their organs of digestion. The formation of calcareous earth seems more particularly to be an animal process as the formation of clay belongs to the vegetable economy; thus the sh.e.l.ls of crabs and other testaceous fish are annually reproduced from the mucous membrane beneath them; the sh.e.l.ls of eggs are first a mucous membrane, and the calculi of the kidneys and those found in all other parts of our system which sometimes contain calcareous earth, seem to originate from inflamed membranes; the bones themselves consist of calcareous earth united with the phosphoric or animal acid, which may be separated by dissolving the ashes of calcined bones in the nitrous acid; the various secretions of animals, as their saliva and urine, abound likewise with calcareous earth, as appears by the incrustations about the teeth and the sediments of urine.

It is probable that animal mucus is a previous process towards the formation of calcareous earth; and that all the calcareous earth in the world which is seen in lime-stones, marbles, spars, alabasters, marls, (which make up the greatest part of the earth's crust, as far as it has yet been penetrated,) have been formed originally by animal and vegetable bodies from the ma.s.s of water, and that by these means the solid part of the terraqueous globe has perpetually been in an increasing state and the water perpetually in a decreasing one.

After the mountains of sh.e.l.ls and other recrements of aquatic animals were elevated above the water the upper heaps of them were gradually dissolved by rains and dews and oozing through were either perfectly crystallized in smaller cavities and formed calcareous spar, or were imperfectly crystallized on the roofs of larger cavities and produced stalactes; or mixing with other undissolved sh.e.l.ls beneath them formed marbles, which were more or less crystallized and more or less pure; or lastly, after being dissolved, the water was exhaled from them in such a manner that the external parts became solid, and forming an arch prevented the internal parts from approaching each other so near as to become solid, and thus chalk was produced. I have specimens of chalk formed at the root of several stalact.i.tes, and in their central parts; and of other stalact.i.tes which are hollow like quills from a similar cause, viz. from the external part of the stalact.i.te hardening first by its evaporation, and thus either attracting the internal dissolved particles to the crust, or preventing them from approaching each other so as to form a solid body. Of these I saw many hanging from the arched roof of a cellar under the high street in Edinburgh.

If this dissolved limestone met with vitriolic acid it was converted into alabaster, parting at the same time with its fixable air. If it met with the fluor acid it became fluor; if with the siliceous acid, flint; and when mixed with clay and sand, or either of them, acquires the name of marl. And under one or other of these forms composes a great part of the solid globe of the earth.

<script>