Part 72 (2/2)

In the southern extremity of Norway there is a large district, on the west side of the fiord of Christiania, in which granite or syenite protrudes in mountain ma.s.ses through fossiliferous strata, and usually sends veins into them at the point of contact. The stratified rocks, replete with sh.e.l.ls and zoophytes, consist chiefly of shale, limestone, and some sandstone, and all these are invariably altered near the granite for a distance of from 50 to 400 yards. The aluminous shales are hardened and have become flinty.

Sometimes they resemble jasper. Ribboned jasper is produced by the hardening of alternate layers of green and chocolate-coloured schist, each stripe faithfully representing the original lines of stratification. Nearer the granite the schist often contains crystals of hornblende, which are even met with in some places for a distance of several hundred yards from the junction; and this black hornblende is so abundant that eminent geologists, when pa.s.sing through the country, have confounded it with the ancient hornblende-schist, subordinate to the great gneiss formation of Norway. Frequently, between the granite and the hornblende slate, above mentioned, grains of mica and crystalline felspar appear in the schist, so that rocks resembling gneiss and mica-schist are produced. Fossils can rarely be detected in these schists, and they are more completely effaced in proportion to the more crystalline texture of the beds, and their vicinity to the granite. In some places the siliceous matter of the schist becomes a granular quartz; and when hornblende and mica are added, the altered rock loses its stratification, and pa.s.ses into a kind of granite.

The limestone, which at points remote from the granite is of an earthy texture, blue colour, and often abounds in corals, becomes a white granular marble near the granite, sometimes siliceous, the granular structure extending occasionally upwards of 400 yards from the junction; and the corals being for the most part obliterated, though sometimes preserved, even in the white marble. Both the altered limestone and hardened slate contain garnets in many places, also ores of iron, lead, and copper, with some silver. These alterations occur equally, whether the granite invades the strata in a line parallel to the general strike of the fossiliferous beds, or in a line at right angles to their strike, as will be seen by the accompanying ground plan.[474-A]

[Ill.u.s.tration: Fig. 512. Altered zone of fossiliferous slate and limestone near granite. Christiania.

_The arrows indicate the dip, and the straight lines the strike, of the beds._]

The indurated and ribboned schists above mentioned bear a strong resemblance to certain shales of the coal found at Russell's Hall, near Dudley, where coal-mines have been on fire for ages. Beds of shale of considerable thickness, lying over the burning coal, have been baked and hardened so as to acquire a flinty fracture, the layers being alternately green and brick-coloured.

The granite of Cornwall, in like manner, sends forth veins into a coa.r.s.e argillaceous-schist, provincially termed killas. This killas is converted into hornblende-schist near the contact with the veins. These appearances are well seen at the junction of the granite and killas, in St. Michael's Mount, a small island nearly 300 feet high, situated in the bay, at a distance of about three miles from Penzance.

The granite of Dartmoor, in Devons.h.i.+re, says Sir H. De la Beche, has intruded itself into the slate and slaty sandstone called greywacke, twisting and contorting the strata, and sending veins into them. Hence some of the slate rocks have become ”micaceous; others more indurated, and with the characters of mica-slate and gneiss; while others again appear converted into a hard-zoned rock strongly impregnated with felspar.”[475-A]

We learn from the investigations of M. Dufrenoy, that in the eastern Pyrenees there are mountain ma.s.ses of granite posterior in date to the formations called lias and chalk of that district, and that these fossiliferous rocks are greatly altered in texture, and often charged with iron-ore, in the neighbourhood of the granite. Thus in the environs of St.

Martin, near St. Paul de Fenouillet, the chalky limestone becomes more crystalline and saccharoid as it approaches the granite, and loses all trace of the fossils which it previously contained in abundance. At some points, also, it becomes dolomitic, and filled with small veins of carbonate of iron, and spots of red iron-ore. At Rancie the lias nearest the granite is not only filled with iron-ore, but charged with pyrites, tremolite, garnet, and a new mineral somewhat allied to felspar, called, from the place in the Pyrenees where it occurs, ”couzeranite.”

Now the alterations above described as superinduced in rocks by volcanic dikes and granite veins, prove incontestably that powers exist in nature capable of transforming fossiliferous into crystalline strata--powers capable of generating in them a new mineral character, similar, nay, often absolutely identical, with that of gneiss, mica-schist, and other stratified members of the hypogene series. The precise nature of these altering causes, which may provisionally be termed plutonic, is in a great degree obscure and doubtful; but their reality is no less clear, and we must suppose the influence of heat to be in some way connected with the trans.m.u.tation, if, for reasons before explained, we concede the igneous origin of granite.

The experiments of Gregory Watt, in fusing rocks in the laboratory, and allowing them to consolidate by slow cooling, prove distinctly that a rock need not be perfectly melted in order that a re-arrangement of its component particles should take place, and a partial crystallization ensue.[475-B] We may easily suppose, therefore, that all traces of sh.e.l.ls and other organic remains may be destroyed; and that new chemical combinations may arise, without the ma.s.s being so fused as that the lines of stratification should be wholly obliterated.

We must not, however, imagine that heat alone, such as may be applied to a stone in the open air, can const.i.tute all that is comprised in plutonic action. We know that volcanos in eruption not only emit fluid lava, but give off steam and other heated gases, which rush out in enormous volume, for days, weeks, or years continuously, and are even disengaged from lava during its consolidation. When the materials of granite, therefore, came in contact with the fossiliferous stratum in the bowels of the earth under great pressure, the contained gases might be unable to escape; yet when brought into contact with rocks, might pa.s.s through their pores with greater facility than water is known to do (p. 35.). These aeriform fluids, such as sulphuretted hydrogen, muriatic acid, and carbonic acid, issue in many places from rents in rocks, which they have discoloured and corroded, softening some and hardening others.

If the rocks are charged with water, they would pa.s.s through more readily; for, according to the experiments of Henry, water, under an hydrostatic pressure of 96 feet, will absorb three times as much carbonic acid gas as it can under the ordinary pressure of the atmosphere. Although this increased power of absorption would be diminished, in consequence of the higher temperature found to exist as we descend in the earth, yet Professor Bischoff has shown that the heat by no means augments in such a proportion as to counteract the effect of augmented pressure.[476-A] There are other gases, as well as the carbonic acid, which water absorbs, and more rapidly in proportion to the amount of pressure. Now even the most compact rocks may be regarded, before they have been exposed to the air and dried, in the light of sponges filled with water; and it is conceivable that heated gases brought into contact with them, at great depths, may be absorbed readily, and transfused through their pores. Although the gaseous matter first observed would soon be condensed, and part with its heat, yet the continual arrival of fresh supplies from below might, in the course of ages, cause the temperature of the water, and with it that of the containing rock, to be materially raised.

M. Fournet, in his description of the metalliferous gneiss near Clermont, in Auvergne, states that all the minute fissures of the rock are quite saturated with free carbonic acid gas, which rises plentifully from the soil there and in many parts of the surrounding country. The various elements of the gneiss, with the exception of the quartz, are all softened; and new combinations of the acid, with lime, iron, and manganese, are continually in progress.[476-B]

Another ill.u.s.tration of the power of subterranean gases is afforded by the stufas of St. Calogero, situated in the largest of the Lipari Islands.

Here, according to the description published by Hoffmann, horizontal strata of tuff, extending for 4 miles along the coast, and forming cliffs more than 200 feet high, have been discoloured in various places, and strangely altered by the ”all-penetrating vapours.” Dark clays have become yellow, or often snow-white; or have a.s.sumed a chequered or brecciated appearance, being crossed with ferruginous red stripes. In some places the fumaroles have been found by a.n.a.lysis to consist partly of sublimations of oxide of iron; but it also appears that veins of chalcedony and opal, and others of fibrous gypsum, have resulted from these volcanic exhalations.[476-C]

The reader may also refer to M. Virlet's account of the corrosion of hard, flinty, and jaspideous rocks near Corinth, by the prolonged agency of subterranean gases[477-A]; and to Dr. Daubeny's description of the decomposition of trachytic rocks in the Solfatara, near Naples, by sulphuretted hydrogen and muriatic acid gases.[477-B]

Although in all these instances we can only study the phenomena as exhibited at the surface, it is clear that the gaseous fluids must have made their way through the whole thickness of porous or fissured rocks, which intervene between the subterranean reservoirs of gas and the external air. The extent, therefore, of the earth's crust, which the vapours have permeated and are now permeating, may be thousands of fathoms in thickness, and their heating and modifying influence may be spread throughout the whole of this solid ma.s.s.

We learn from Professor Bischoff that the steam of a hot spring at Aix-la-Chapelle, although its temperature is only from 133 to 167 F., has converted the surface of some blocks of black marble into a doughy ma.s.s. He conceives, therefore, that steam in the bowels of the earth having a temperature equal or even greater than the melting point of lava, and having an elasticity of which even Papin's digester can give but a faint idea, may convert rocks into liquid matter.[477-C]

The above observations are calculated to meet some of the objections which have been urged against the metamorphic theory on the ground of the small power of rocks to conduct heat; for it is well known that rocks, when dry and in the air, differ remarkably from metals in this respect. It has been asked how the changes which extend merely for a few feet from the contact of a dike could have penetrated through mountain ma.s.ses of crystalline strata several miles in thickness. Now it has been stated that the plutonic influence of the syenite of Norway has sometimes altered fossiliferous strata for a distance of a quarter of a mile, both in the direction of their dip and of their strike. (See fig. 512. p. 474.) This is undoubtedly an extreme case; but is it not far more philosophical to suppose that this influence may, under favourable circ.u.mstances, affect denser ma.s.ses, than to invent an entirely new cause to account for effects merely differing in quant.i.ty, and not in kind? The metamorphic theory does not require us to affirm that some contiguous ma.s.s of granite has been the altering power; but merely that an action, existing in the interior of the earth at an unknown depth, whether thermal, electrical, or other, a.n.a.logous to that exerted near intruding ma.s.ses of granite, has, in the course of vast and indefinite periods, and when rising perhaps from a large heated surface, reduced strata thousands of yards thick to a state of semi-fusion, so that on cooling they have become crystalline, like gneiss. Granite may have been another result of the same action in a higher state of intensity, by which a thorough fusion has been produced; and in this manner the pa.s.sage from granite into gneiss may be explained.

Some geologists are of opinion, that the alternate layers of mica and quartz, or mica and felspar, or lime and felspar, are so much more distinct, in certain metamorphic rocks, than the ingredients composing alternate layers in many sedimentary deposits, that the similar particles must be supposed to have exerted a molecular attraction for each other, and to have thus congregated together in layers more distinct in mineral composition than before they were crystallized.

In considering, then, the various data already enumerated, the forms of stratification in metamorphic rocks, their pa.s.sage on the one hand into the fossiliferous, and on the other into the plutonic formations, and the conversions which can be ascertained to have occurred in the vicinity of granite, we may conclude that gneiss and mica-schist may be nothing more than altered micaceous and argillaceous sandstones that granular quartz may have been derived from siliceous sandstone, and compact quartz from the same materials. Clay-slate may be altered shale, and granular marble may have originated in the form of ordinary limestone, replete with sh.e.l.ls and corals, which have since been obliterated; and, lastly, calcareous sands and marls may have been changed into impure crystalline limestones.

”Hornblende-schist,” says Dr. MacCulloch, ”may at first have been mere clay; for clay or shale is found altered by trap into Lydian stone, a substance differing from hornblende-schist almost solely in compactness and uniformity of texture.”[478-A] ”In Shetland,” remarks the same author, ”argillaceous-schist (or clay-slate), when in contact with granite, is sometimes converted into hornblende-schist, the schist becoming first siliceous, and ultimately, at the contact, hornblende-schist.”[478-B]

The anthracite and plumbago a.s.sociated with hypogene rocks may have been coal; for not only is coal converted into anthracite in the vicinity of some trap dikes, but we have seen that a like change has taken place generally even far from the contact of igneous rocks, in the disturbed region of the Appalachians.[478-C] At Worcester, in the state of Ma.s.sachusetts, 45 miles due west of Boston, a bed of plumbago and impure anthracite occurs, interstratified with mica-schist. It is about 2 feet in thickness, and has been made use of both as fuel, and in the manufacture of lead pencils. At the distance of 30 miles from the plumbago, there occurs, on the borders of Rhode Island, an impure anthracite in slates, containing impressions of coal-plants of the genera _Pecopteris_, _Neuropteris_, _Calamites_, &c. This anthracite is intermediate in character between that of Pennsylvania and the plumbago of Worcester, in which last the gaseous or volatile matter (hydrogen, oxygen, and nitrogen) is to the carbon only in the proportion of 3 per cent. After traversing the country in various directions, I came to the conclusion that the carboniferous shales or slates with anthracite and plants, which in Rhode Island often pa.s.s into mica-schist, have at Worcester a.s.sumed a perfectly crystalline and metamorphic texture; the anthracite having been nearly trans.m.u.ted into that state of pure carbon which is called plumbago or graphite.[479-A]

<script>