Part 14 (1/2)

[62-B] Geol. Trans. second series, vol. v. p. 452.

[64-A] Conybeare and Phillips, Outlines, &c. p. 376.

[64-B] Phillips, Geology, Lardner's Cyclop. p. 41.

[65-A] See the results of the ”Geological Survey of Great Britain;”

Memoirs, vols. i. and ii., by Sir H. De la Beche, Mr. A. C. Ramsay, and Mr. John Phillips.

CHAPTER VI.

DENUDATION.

Denudation defined--Its amount equal to the entire ma.s.s of stratified deposits in the earth's crust--Horizontal sandstone denuded in Ross-s.h.i.+re--Levelled surface of countries in which great faults occur--Coalbrook Dale--Denuding power of the ocean during the emergence of land--Origin of Valleys--Obliteration of sea-cliffs--Inland sea-cliffs and terraces in the Morea and Sicily--Limestone pillars at St. Mihiel, in France--in Canada--in the Bermudas.

Denudation, which has been occasionally spoken of in the preceding chapters, is the removal of solid matter by water in motion, whether of rivers or of the waves and currents of the sea, and the consequent laying bare of some inferior rock. Geologists have perhaps been seldom in the habit of reflecting that this operation has exerted an influence on the structure of the earth's crust as universal and important as sedimentary deposition itself; for denudation is the inseparable accompaniment of the production of all new strata of mechanical origin. The formation of every new deposit by the transport of sediment and pebbles necessarily implies that there has been, somewhere else, a grinding down of rock into rounded fragments, sand, or mud, equal in quant.i.ty to the new strata. All deposition, therefore, except in the case of a shower of volcanic ashes, is the sign of superficial waste going on contemporaneously, and to an equal amount elsewhere. The gain at one point is no more than sufficient to balance the loss at some other. Here a lake has grown shallower, there a ravine has been deepened. The bed of the sea has in one region been raised by the acc.u.mulation of new matter, in another its depth has been augmented by the abstraction of an equal quant.i.ty.

When we see a stone building, we know that somewhere, far or near, a quarry has been opened. The courses of stone in the building may be compared to successive strata, the quarry to a ravine or valley which has suffered denudation. As the strata, like the courses of hewn stone, have been laid one upon another gradually, so the excavation both of the valley and quarry have been gradual. To pursue the comparison still farther, the superficial heaps of mud, sand, and gravel, usually called alluvium, may be likened to the rubbish of a quarry which has been rejected as useless by the workmen, or has fallen upon the road between the quarry and the building, so as to lie scattered at random over the ground.

If, then, the entire ma.s.s of stratified deposits in the earth's crust is at once the monument and measure of the denudation which has taken place, on how stupendous a scale ought we to find the signs of this removal of transported materials in past ages! Accordingly, there are different cla.s.ses of phenomena, which attest in a most striking manner the vast s.p.a.ces left vacant by the erosive power of water. I may allude, first, to those valleys on both sides of which the same strata are seen following each other in the same order, and having the same mineral composition and fossil contents. We may observe, for example, several formations, as Nos.

1, 2, 3, 4, in the accompanying diagram (fig. 89.); No. 1. conglomerate, No. 2. clay, No. 3. grit, and No. 4. limestone, each repeated in a series of hills separated by valleys varying in depth. When we examine the subordinate parts of these four formations, we find, in like manner, distinct beds in each, corresponding, on the opposite sides of the valleys, both in composition and order of position. No one can doubt that the strata were originally continuous, and that some cause has swept away the portions which once connected the whole series. A torrent on the side of a mountain produces similar interruptions; and when we make artificial cuts in lowering roads, we expose, in like manner, corresponding beds on either side. But in nature, these appearances occur in mountains several thousand feet high, and separated by intervals of many miles or leagues in extent, of which a grand exemplification is described by Dr. MacCulloch, on the north-western coast of Ross-s.h.i.+re, in Scotland.[67-A] The fundamental rock of that country is gneiss, in disturbed strata, on which beds of nearly horizontal red sandstone rest unconformably. The latter are often very thin, forming mere flags, with their surfaces, distinctly ripple-marked.

They end abruptly on the declivities of many insulated mountains, which rise up at once to the height of about 2000 feet above the gneiss of the surrounding plain or table land, and to an average elevation of about 3000 feet above the sea, which all their summits generally attain. The base of gneiss varies in height, so that the lower portions of the sandstone occupy different levels, and the thickness of the ma.s.s is various, sometimes exceeding 3000 feet. It is impossible to compare these scattered and detached portions without imagining that the whole country has once been covered with a great body of sandstone, and that ma.s.ses from 1000 to more than 3000 feet in thickness have been removed.

[Ill.u.s.tration: Fig. 89. Valleys of denudation. _a._ alluvium.]

[Ill.u.s.tration: Fig. 90. Denudation of red sandstone on north-west coast of Ross-s.h.i.+re. (MacCulloch.)]

In the ”Survey of Great Britain” (vol. i.), Professor Ramsay has shown that the missing beds, removed from the summit of the Mendips, must have been nearly a mile in thickness; and he has pointed out considerable areas in South Wales and some of the adjacent counties of England, where a series of palaeozoic strata, not less than 11,000 feet in thickness, have been stripped off. All these materials have of course been transported to new regions, and have entered into the composition of more modern formations.

On the other hand, it is shown by observations in the same ”Survey,” that the palaeozoic strata are from 20,000 to 30,000 feet thick. It is clear that such rocks, formed of mud and sand, now for the most part consolidated, are the monuments of denuding operations, which took place on a grand scale at a very remote period in the earth's history. For, whatever has been given to one area must always have been borrowed from another; a truth which, obvious as it may seem when thus stated, must be repeatedly impressed on the student's mind, because in many geological speculations it is taken for granted that the external crust of the earth has been always growing thicker, in consequence of the acc.u.mulation, period after period, of sedimentary matter, as if the new strata were not always produced at the expense of pre-existing rocks, stratified or unstratified. By duly reflecting on the fact, that all deposits of mechanical origin imply the transportation from some other region, whether contiguous or remote, of an equal amount of solid matter, we perceive that the stony exterior of the planet must always have grown thinner in one place whenever, by accessions of new strata, it was acquiring density in another. No doubt the vacant s.p.a.ce left by the missing rocks, after extensive denudation, is less imposing to the imagination than a vast thickness of conglomerate or sandstone, or the bodily presence as it were of a mountain-chain, with all its inclined and curved strata. But the denuded tracts speak a clear and emphatic language to our reason, and, like repeated layers of fossil nummulites, corals or sh.e.l.ls, or like numerous seams of coal, each based on its under clay full of the roots of trees, still remaining in their natural position, demand an indefinite lapse of time for their elaboration.

No one will maintain that the fossils entombed in these rocks did not belong to many successive generations of plants and animals. In like manner, each sedimentary deposit attests a slow and gradual action, and the strata not only serve as a measure of the amount of denudation simultaneously effected elsewhere, but are also a correct indication of the rate at which the denuding operation was carried on.

Perhaps the most convincing evidence of denudation on a magnificent scale is derived from the levelled surfaces of districts where large faults occur. I have shown, in fig. 87. p. 63., and in fig. 91., how angular and protruding ma.s.ses of rock might naturally have been looked for on the surface immediately above great faults, although in fact they rarely exist.

This phenomenon may be well studied in those districts where coal has been extensively worked, for there the former relation of the beds which have s.h.i.+fted their position may be determined with great accuracy. Thus in the coal field of Ashby de la Zouch, in Leicesters.h.i.+re (see fig. 91.), a fault occurs, on one side of which the coal beds _a b c d_ rise to the height of 500 feet above the corresponding beds on the other side. But the uplifted strata do not stand up 500 feet above the general surface; on the contrary, the outline of the country, as expressed by the line _z z_, is uniform and unbroken, and the ma.s.s indicated by the dotted outline must have been washed away.[69-A] There are proofs of this kind in some level countries, where dense ma.s.ses of strata have been cleared away from areas several hundred square miles in extent.

[Ill.u.s.tration: Fig. 91. Faults and denuded coal strata, Ashby de la Zouch. (Mammat.)]

In the Newcastle coal district it is ascertained that faults occur in which the upward or downward movement could not have been less than 140 fathoms, which, had they affected equally the configuration of the surface to that amount, would produce mountains with precipitous escarpments nearly 1000 feet high, or chasms of the like depth; yet is the actual level of the country absolutely uniform--affording no trace whatever of subterranean movements.[69-B]

The ground from which these materials have been removed is usually overspread with heaps of sand and gravel, formed out of the ruins of the very rocks which have disappeared. Thus, in the districts above referred to, they consist of rounded and angular fragments of hard sandstone, limestone, and ironstone, with a small quant.i.ty of the more destructible shale, and even rounded pieces of coal.

Allusion has been already made to the shattered state and discordant position of the carboniferous strata in Coalbrook Dale (p. 62.). The collier cannot proceed three or four yards without meeting with small slips, and from time to time he encounters faults of considerable magnitude, which have thrown the rocks up or down several hundred feet. Yet the superficial inequalities to which these dislocated ma.s.ses originally gave rise are no longer discernible, and the comparative flatness of the existing surface can only be explained, as Mr. Prestwich has observed, by supposing the fractured portions to have been removed by water. It is also clear that strata of red sandstone, more than 1000 feet thick, which once covered the coal, in the same region, have been carried away from large areas. That water has, in this case, been the denuding agent, we may infer from the fact that the rocks have yielded according to their different degrees of hardness; the hard trap of the Wrekin, for example, and other hills, having resisted more than the softer shale and sandstone, so as now to stand out in bold relief.[70-A]

_Origin of valleys._--Many of the earlier geologists, and Dr. Hutton among them, taught that ”rivers have in general hollowed out their valleys.” This is true only of rivulets and torrents which are the feeders of the larger streams, and which, descending over rapid slopes, are most subject to temporary increase and diminution in the volume of their waters. The quant.i.ty of mud, sand, and pebbles const.i.tuting many a modern delta proves indisputably that no small part of the inequalities now existing on the earth's surface are due to fluviatile action; but the princ.i.p.al valleys in almost every great hydrographical basin in the world, are of a shape and magnitude which imply that they have been due to other causes besides the mere excavating power of rivers.

Some geologists have imagined that a deluge, or succession of deluges, may have been the chief denuding agency, and they have speculated on a series of enormous waves raised by the instantaneous upthrow of continents or mountain chains out of the sea. But even were we disposed to grant such sudden upheavals of the floor of the ocean, and to a.s.sume that great waves would be the consequence of each convulsion, it is not easy to explain the observed phenomena by the aid of so gratuitous an hypothesis.

On the other hand, a machinery of a totally different kind seems capable of giving rise to effects of the required magnitude. It has now been ascertained that the rising and sinking of extensive portions of the earth's crust, whether insensibly or by a repet.i.tion of sudden shocks, is part of the actual course of nature, and we may easily comprehend how the land may have been exposed during these movements to abrasion by the waves of the sea. In the same manner as a mountain ma.s.s may, in the course of ages, be formed by sedimentary deposition, layer after layer, so ma.s.ses equally voluminous may in time waste away by inches; as, for example, if beds of incoherent materials are raised slowly in an open sea where a strong current prevails. It is well known that some of these oceanic currents have a breadth of 200 miles, and that they sometimes run for a thousand miles or more in one direction, retaining a considerable velocity even at the depth of several hundred feet. Under these circ.u.mstances, the flowing waters may have power to clear away each stratum of incoherent materials as it rises and approaches the surface, where the waves exert the greatest force; and in this manner a voluminous deposit may be entirely swept away, so that, in the absence of faults, no evidence may remain of the denuding operation. It may indeed be affirmed that the signs of waste will usually be least obvious where the destruction has been most complete; for the annihilation may have proceeded so far, that no ruins are left of the dilapidated rocks.

Although denudation has had a levelling influence on some countries of shattered and disturbed strata (see fig. 87. p. 63. and fig. 91. p. 69.), it has more commonly been the cause of superficial inequalities, especially in regions of horizontal stratification. The general outline of these regions is that of flat and level platforms, interrupted by valleys often of considerable depth, and ramifying in various directions. These hollows may once have formed bays and channels between islands, and the steepest slope on the sides of each valley may have been a sea-cliff, which was undermined for ages, as the land emerged gradually from the deep. We may suppose the position and course of each valley to have been originally determined by differences in the hardness of the rocks, and by rents and joints which usually occur even in horizontal strata. In mountain chains, such as the Jura before described (see fig. 71. p. 55.), we perceive at once that the princ.i.p.al valleys have not been due to aqueous excavation, but to those mechanical movements which have bent the rocks into their present form. Yet even in the Jura there are many valleys, such as C (fig.