Part 5 (1/2)

But when you enter the USC lab, you see something quite different. You see boxes of cubical modules, each about 2 inches square, that can join or separate, allowing you to create a variety of animal-like creatures. You can create snakes that slither in a line. Or rings that can roll like a hoop. But then you can twist these cubes or hook them up with Y-shaped joints, so you can create an entirely new set of devices resembling octopi, spiders, dogs, or cats. Think of a smart Lego set, with each block being intelligent and capable of arranging itself in any configuration imaginable.

This would be useful for going past barriers. If a spider-shaped robot was crawling in the sewer system and encountered a wall, it would first find a tiny hole in the wall and then disa.s.semble itself. Each piece would go through the hole, and then the pieces would rea.s.semble themselves on the other side of the wall. In this way, these modular robots would be nearly unstoppable, able to negotiate most obstacles.

These modular robots might be crucial in repairing our decaying infrastructure. In 2007, for example, the Mississippi River bridge in Minneapolis collapsed, killing 13 people and injuring 145, probably because the bridge was aging, overloaded, and had design flaws. There are perhaps hundreds of similar accidents waiting to happen across the country, but it simply costs too much money to monitor every decaying bridge and make repairs. This is where modular robots may come to the rescue, silently checking our bridges, roads, tunnels, pipes, and power stations, and making repairs when necessary. (For example, the bridges into lower Manhattan have suffered greatly due to corrosion, neglect, and lack of repairs. One worker found a 1950s c.o.ke bottle left over from when the bridges were last painted. In fact, one section of the aging Manhattan Bridge came dangerously close to collapse recently and had to be shut down for repairs.) ROBOT SURGEONS AND COOKS.

Robots may be used as surgeons as well as cooks and musicians. For example, one important limitation of surgery is the dexterity and accuracy of the human hand. Surgeons, like all people, become fatigued after many hours and their efficiency drops. Fingers begin to tremble. Robots may solve these problems.

For example, traditional surgery for a heart bypa.s.s operation involves opening a foot-long gash in the middle of the chest, which requires general anesthesia. Opening the chest cavity increases the possibility of infection and the length of time for recovery, creates intense pain and discomfort during the healing process, and leaves a disfiguring scar. But the da Vinci robotic system can vastly decrease all these. The da Vinci robot has four robotic arms, one for manipulating a video camera and three for precision surgery. Instead of making a long incision in the chest, it makes only several tiny incisions in the side of the body. There are 800 hospitals in Europe and North and South America that use this system; 48,000 operations were performed in 2006 alone with this robot. Surgery can also be done by remote control over the Internet, so a world-cla.s.s surgeon in a major city can perform surgery on a patient in an isolated rural area on another continent.

In the future, more advanced versions will be able to perform surgery on microscopic blood vessels, nerve fibers, and tissues by manipulating microscopic scalpels, tweezers, and needles, which is impossible today. In fact, in the future, only rarely will the surgeon slice the skin at all. Noninvasive surgery will become the norm.

Endoscopes (long tubes inserted into the body that can illuminate and cut tissue) will be thinner than thread. Micromachines smaller than the period at the end of this sentence will do much of the mechanical work. (In one episode of the original Star Trek, Star Trek, Doctor McCoy was totally revolted that doctors in the twentieth century had to cut skin.) The day when this is a reality is coming soon. Doctor McCoy was totally revolted that doctors in the twentieth century had to cut skin.) The day when this is a reality is coming soon.

Medical students in the future will learn to slice up 3-D virtual images of the human body, where each movement of the hand is reproduced by a robot in another room.

The j.a.panese have also excelled at producing robots that can interact socially with humans. In Nagoya, there is the robot chef that can create a standard fast-food dinner in a few minutes. You simply punch in what you want from a menu and the robot chef produces your meal in front of you. Built by Aisei, an industrial robotics company, this robot can cook noodles in 1 minute and 40 seconds and can serve 80 bowls on a busy day. The robot chef looks very much like ones on the automobile a.s.sembly lines in Detroit. You have two large mechanical arms, which are precisely programmed to move in a certain sequence. Instead of s.c.r.e.w.i.n.g and welding metal in a factory, however, these robotic fingers grab ingredients from a series of bowls containing dressing, meat, flour, sauces, spices, etc. The robotic arms mix and then a.s.semble them into a sandwich, salad, or soup. The Aisei cook looks like a robot, resembling two gigantic hands emerging from the kitchen counter. But other models being planned start to look more human.

Also in j.a.pan, Toyota has created a robot that can play the violin almost as well as any professional. It resembles ASIMO, except that it can grab a violin, sway with the music, and then delicately play complex violin pieces. The sound is amazingly realistic and the robot can make grand gestures like a master musician. Although the music is not yet at the level of a concert violinist, it is good enough to entertain audiences. Of course, in the last century, we have had mechanical piano machines that played tunes inscribed on a large rotating disk. Like these piano machines, the Toyota machine is also programmed. But the difference is that the Toyota machine is deliberately designed to mimic all the positions and postures of a human violinist in the most realistic way.

Also, at Waseda University in j.a.pan, scientists have made a robotic flutist. The robot contains hollow chambers in its chest, like lungs, which blow air over a real flute. It can play quite complex melodies like ”The Flight of the b.u.mblebee.” These robots cannot create new music, we should emphasize, but they can rival a human in their ability to perform music.

The robot chef and robot musician are carefully programmed. They are not autonomous. Although these robots are quite sophisticated compared to the old player pianos, they still operate on the same principles. True robot maids and butlers are still in the distant future. But the descendants of the robot chef and the robot violinist and flutist may one day find themselves embedded in our lives, performing basic functions that were once thought to be exclusively human.

EMOTIONAL ROBOTS.

By midcentury, the era of emotional robots may be in full flower.

In the past, writers have fantasized about robots that yearn to become human and have emotions. In Pinocchio, Pinocchio, a wooden puppet wished to become a real boy. In the a wooden puppet wished to become a real boy. In the Wizard of Oz, Wizard of Oz, the Tin Man wished for a heart. And in the Tin Man wished for a heart. And in Star Trek: The Next Generation, Star Trek: The Next Generation, Data the android tried to master emotions by telling jokes and figuring out what makes us laugh. In fact, in science fiction, it is a recurring theme that although robots may become increasingly intelligent, the essence of emotions will always elude them. Robots may one day become smarter than us, some science fiction writers declare, but they won't be able to cry. Data the android tried to master emotions by telling jokes and figuring out what makes us laugh. In fact, in science fiction, it is a recurring theme that although robots may become increasingly intelligent, the essence of emotions will always elude them. Robots may one day become smarter than us, some science fiction writers declare, but they won't be able to cry.

Actually, that may not be true. Scientists are now understanding the true nature of emotions. First, emotions tell us what is good for us and what is harmful. The vast majority of things in the world are either harmful or not very useful. When we experience the emotion of ”like,” we are learning to identify the tiny fraction of things in the environment that are beneficial to us.

In fact, each of our emotions (hate, jealousy, fear, love, etc.) evolved over millions of years to protect us from the dangers of a hostile world and help us to reproduce. Every emotion helps to propagate our genes into the next generation.

The critical role of emotions in our evolution was apparent to neurologist Antonio Damasio of the University of Southern California, who a.n.a.lyzed victims of brain injuries or disease. In some of these patients, the link between the thinking part of their brains (the cerebral cortex) and the emotional center (located deep in the center of the brain, like the amygdala) was cut. These people were perfectly normal, except they had difficulty expressing emotions.

One problem became immediately obvious: they could not make choices. Shopping was a nightmare, since everything had the same value to them, whether it was expensive or cheap, garish or sophisticated. Setting an appointment was almost impossible, since all dates in the future were the same. They seem ”to know, but not to feel,” he said.

In other words, one of the chief purposes of emotions is to give us values, so we can decide what is important, what is expensive, what is pretty, and what is precious. Without emotions, everything has the same value, and we become paralyzed by endless decisions, all of which have the same weight. So scientists are now beginning to understand that emotions, far from being a luxury, are essential to intelligence.

For example, when one watches Star Trek Star Trek and sees Spock and Data performing their jobs supposedly without any emotions, you now realize the flaw immediately. At every turn, Spock and Data have exhibited emotions: they have made a long series of value judgments. They decided that being an officer is important, that it is crucial to perform certain tasks, that the goal of the Federation is a n.o.ble one, that human life is precious, etc. So it is an illusion that you can have an officer devoid of emotions. and sees Spock and Data performing their jobs supposedly without any emotions, you now realize the flaw immediately. At every turn, Spock and Data have exhibited emotions: they have made a long series of value judgments. They decided that being an officer is important, that it is crucial to perform certain tasks, that the goal of the Federation is a n.o.ble one, that human life is precious, etc. So it is an illusion that you can have an officer devoid of emotions.

Emotional robots could also be a matter of life and death. In the future, scientists may be able to create rescue robots-robots that are sent into fires, earthquakes, explosions, etc. They will have to make thousands of value judgments about who and what to save and in what order. Surveying the devastation all around them, they will have to rank the various tasks they face in order of priority.

Emotions are also essential if you view the evolution of the human brain. If you look at the gross anatomical features of the brain, you notice that they can be grouped into three large categories.

First, you have the reptilian brain, found near the base of the skull, which makes up most of the brain of reptiles. Primitive life functions, such as balance, aggression, territoriality, searching for food, etc., are controlled by this part of the brain. (Sometimes, when staring at a snake that is staring back at you, you get a creepy sensation. You wonder, What is the snake thinking about? If this theory is correct, then the snake is not thinking much at all, except whether or not you are lunch.) When we look at higher organisms, we see that the brain has expanded toward the front of the skull. At the next level, we find the monkey brain, or the limbic system, located in the center of our brain. It includes components like the amygdala, which is involved in processing emotions. Animals that live in groups have an especially well-developed limbic system. Social animals that hunt in groups require a high degree of brainpower devoted to understanding the rules of the pack. Since success in the wilderness depends on cooperating with others, but because these animals cannot talk, it means that these animals must communicate their emotional state via body language, grunts, whines, and gestures.

Finally, we have the front and outer layer of the brain, the cerebral cortex, the layer that defines humanity and governs rational thought. While other animals are dominated by instinct and genetics, humans use the cerebral cortex to reason things out.

If this evolutionary progression is correct, it means that emotions will play a vital role in creating autonomous robots. So far, robots have been created that mimic only the reptilian brain. They can walk, search their surroundings, and pick up objects, but not much more. Social animals, on the other hand, are more intelligent than those with just a reptilian brain. Emotions are required to socialize the animal and for it to master the rules of the pack. So scientists have a long way to go before they can model the limbic system and the cerebral cortex.

Cynthia Breazeal of MIT actually created a robot specifically designed to tackle this problem. The robot is KISMET, with a face that resembles a mischievous elf. On the surface, it appears to be alive, responding to you with facial motions representing emotions. KISMET can duplicate a wide range of emotions by changing its facial expressions. In fact, women who react to this childlike robot often speak to KISMET in ”motherese,” what mothers use when talking to babies and children. Although robots like KISMET are designed to mimic emotions, scientists have no illusion that the robot actually feels emotions. In some sense, it is like a tape recorder programmed not to make sounds, but to make facial emotions instead, with no awareness of what it is doing. But the breakthrough with KISMET is that it does not take much programming to create a robot that will mimic humanlike emotions to which humans will respond.

These emotional robots will find their way into our homes. They won't be our confidants, secretaries, or maids, but they will be able to perform rule-based procedures based on heuristics. By midcentury, they may have the intelligence of a dog or cat. Like a pet, they will exhibit an emotional bond with their master, so that they will not be easily discarded. You will not be able to speak to them in colloquial English, but they will understand programmed commands, perhaps hundreds of them. If you tell them to do something that is not already stored in their memory (such as ”go fly a kite”), they will simply give you a curious, confused look. (If by midcentury robot dogs and cats can duplicate the full range of animal responses, indistinguishable from real animal behavior, then the question arises whether these robot animals feel or are as intelligent as an ordinary dog or cat.) Sony experimented with these emotional robots when it manufactured the AIBO (artificial intelligence robot) dog. It was the first toy to realistically respond emotionally to its master, albeit in a primitive way. For example, if you pet the AIBO dog on its back, it would immediately begin to murmur, uttering soothing sounds. It could walk, respond to voice commands, and even learn to a degree. AIBO cannot learn new emotions and emotional responses. (It was discontinued in 2005 due to financial reasons, but it has since created a loyal following who upgrade the computer's software so AIBO can perform more tasks.) In the future, robotic pets that form an emotional attachment to children may become common.

Although these robot pets will have a large library of emotions and will form lasting attachments with children, they will not feel actual emotions.

REVERSE ENGINEER THE BRAIN.

By midcentury, we should be able to complete the next milestone in the history of AI: reverse engineering the human brain. Scientists, frustrated that they have not been able to create a robot made of silicon and steel, are also trying the opposite approach: taking apart the brain, neuron by neuron-just like a mechanic might take apart a motor, screw by screw-and then running a simulation of these neurons on a huge computer. These scientists are systematically trying to simulate the firings of neurons in animals, starting with mice, cats, and going up the evolutionary scale of animals. This is a well-defined goal, and should be possible by midcentury.

MIT's Fred Hapgood writes, ”Discovering how the brain works-exactly how it works, the way we know how a motor works-would rewrite almost every text in the library.” how it works, the way we know how a motor works-would rewrite almost every text in the library.”

The first step in the process of reverse engineering the brain is to understand its basic structure. Even this simple task has been a long, painful process. Historically, the various parts of the brain were identified during autopsies, without a clue as to their function. This gradually began to change when scientists a.n.a.lyzed people with brain damage, and noticed that damage to certain parts of the brain corresponded to changes in behavior. Stroke victims and people suffering from brain injuries or diseases exhibited specific behavior changes, which could then be matched to injuries in specific parts of the brain.

The most spectacular example of this was in 1848 in Vermont, when a 3-foot, 8-inch-long metal rod was driven right through the skull of a railroad foreman named Phineas Gage. This history-making accident happened when dynamite accidentally exploded. The rod entered the side of his face, shattered his jaw, went through his brain, and pa.s.sed out the top of his head. Miraculously, he survived this horrendous accident, although one or both of his frontal lobes were destroyed. The doctor who treated him at first could not believe that anyone could survive such an accident and still be alive. He was in a semiconscious state for several weeks, but later miraculously recovered. He even survived for twelve more years, taking odd jobs and traveling, dying in 1860. Doctors carefully preserved his skull and the rod, and they have been intensely studied ever since. Modern techniques, using CT scans, have reconstructed details of this extraordinary accident.

This event forever changed the prevailing opinions of the mind-body problem. Previously, it was believed even within scientific circles that the soul and the body were separate ent.i.ties. People wrote knowingly about some ”life force” that animated the body, independent of the brain. But widely circulated reports indicated that Gage's personality underwent marked changes after the accident. Some accounts claim that Gage was a well-liked, outgoing man who became abusive and hostile after the accident. The impact of these reports reinforced the idea that specific parts of the brain controlled different behaviors, and hence the body and soul were inseparable.

In the 1930s, another breakthrough was made when neurologists like Wilder Penfield noticed that while performing brain surgery for epilepsy sufferers, when he touched parts of the brain with electrodes, certain parts of the patient's body could be stimulated. Touching this or that part of the cortex could cause a hand or leg to move. In this way, he was able to construct a crude outline of which parts of the cortex controlled which parts of the body. As a result, one could redraw the human brain, listing which parts of the brain controlled which organ. The result was a homunculus, a rather bizarre picture of the human body mapped onto the surface of the brain, which looked like a strange little man, with huge fingertips, lips, and tongue, but a tiny body.

More recently, MRI scans have given us revealing pictures of the thinking brain, but they are incapable of tracing the specific neural pathways of thought, perhaps involving only a few thousand neurons. But a new field called optogenetics combines optics and genetics to unravel specific neural pathways in animals. By a.n.a.logy, this can be compared to trying to create a road map. The results of the MRI scans would be akin to determining the large interstate highways and the large flow of traffic on them. But optogenetics might be able to actually determine individual roads and pathways. In principle, it even allows scientists the possibility of controlling animal behavior by stimulating these specific pathways.

This, in turn, generated several sensational media stories. The Drudge Report ran a lurid headline that screamed, ”Scientists Create Remote-Controlled Flies.” The media conjured up visions of remote-controlled flies carrying out the dirty work of the Pentagon. On the Tonight Show, Tonight Show, Jay Leno even talked about a remote-controlled fly that could fly into the mouth of President George W. Bush on command. Although comedians had a field day imagining bizarre scenarios of the Pentagon commanding h.o.a.rds of insects with the push of a b.u.t.ton, the reality is much more modest. Jay Leno even talked about a remote-controlled fly that could fly into the mouth of President George W. Bush on command. Although comedians had a field day imagining bizarre scenarios of the Pentagon commanding h.o.a.rds of insects with the push of a b.u.t.ton, the reality is much more modest.

The fruit fly has roughly 150,000 neurons in the brain. Optogenetics allows scientists to light up certain neurons in the brains of fruit flies that correspond to certain behaviors. For example, when two specific neurons are activated, it can signal the fruit fly to escape. The fly then automatically extends its legs, spreads its wings, and takes off. Scientists were able to genetically breed a strain of fruit flies whose escape neurons fired every time a laser beam was turned on. If you shone a laser beam on these fruit flies, they took off each time.

The implications for determining the structure of the brain are important. Not only would we be able to slowly tease apart neural pathways for certain behaviors, but we also could use this information to help stroke victims and patients suffering from brain diseases and accidents.

Gero Miesenbock of Oxford University and his colleagues have been able to identify the neural mechanisms of animals in this way. They can study not only the pathways for the escape reflex in fruit flies but also the reflexes involved in smelling odors. They have studied the pathways governing food-seeking in roundworms. They have studied the neurons involved in decision making in mice. They found that while as few as two neurons were involved in triggering behaviors in fruit flies, almost 300 neurons were activated in mice for decision making.

The basic tools they have been using are genes that can control the production of certain dyes, as well as molecules that react to light. For example, there is a gene from jellyfish that can make green fluorescent protein. Also, there are a variety of molecules like rhodopsin that respond when light is shone upon them by allowing ions to pa.s.s through cell membranes. In this way, s.h.i.+ning light on these organisms can trigger certain chemical reactions. Armed with these dyes and light-sensitive chemicals, these scientists have been able for the first time to tease apart neural circuits governing specific behaviors.

So although comedians like to poke fun at these scientists for trying to create Frankenstein fruit flies controlled by the push of a b.u.t.ton, the reality is that scientists are, for the first time in history, tracing the specific neural pathways of the brain that control specific behaviors.