Volume Xxiv., No. 12, March 18, 1871 Part 1 (1/2)
Scientific American, Volume XXIV., No. 12, March 18, 1871.
by Various.
THE INFLUENCE OF INTENSE COLD ON STEEL AND IRON.
[Condensed from Nature.]
There has recently been a most interesting discussion at the Literary and Philosophical Society, Manchester, on the above subject.
The paper which gave rise to the discussion was by Mr. Brockbank, who detailed many experiments, and ended by stating his opinion that iron does become much weaker, both in its cast and wrought states, under the influence of low temperature; but Mr. Brockbank's paper was immediately followed by others by Sir W. Fairbairn, Dr. Joule, and Mr.
Spence, which at once put an entirely new complexion on the matter.
Dr. Joule says:
”As is usual in a severe frost, we have recently heard of many severe accidents consequent upon the fracture of the tires of the wheels of railway carriages. The common-sense explanation of these accidents is, that the ground being harder than usual, the metal with which it is brought into contact is more severely tried than in ordinary circ.u.mstances. In order apparently to excuse certain railway companies, a pretence has been set up that iron and steel become brittle at a low temperature. This pretence, although put forth in defiance, not only of all we know, of the properties of materials, but also of the experience of everyday life, has yet obtained the credence of so many people that I thought it would be useful to make the following simple experiments:
”1st. A freezing mixture of salt and snow was placed on a table. Wires of steel and of iron were stretched, so that a part of them was in contact with the freezing mixture and another part out of it. In every case I tried the wire broke outside of the mixture, showing that it was weaker at 50 F., than at about 12 F.
”2d. I took twelve darning needles of good quality, 3 in. long, 1/24 in. thick. The ends of these were placed against steel props, 2-1/8 in. asunder. In making an experiment, a wire was fastened to the middle of a needle, the other end being attached to a spring weighing-machine. This was then pulled until the needle gave way. Six of the needles, taken at random, were tried at a temperature of 55 F., and the remaining six in a freezing mixture which brought down their temperature to 12 F. The results were as follow:--
Warm Needles. Cold Needles.
64 ounces broke 55 ounces broke 65 ” ” 64 ” ”
55 ” ” 72 ” ”
62 ” ” 60 ” bent 44 ” ” 68 ” broke 60 ” bent 40 ” ”
--- --- Average, 58-1/3 Average, 59-5/6
”I did not notice any perceptible difference in the perfection of elasticity in the two sets of needles. The result, as far as it goes, is in favor of the cold metal.
”3d. The above are doubtless decisive of the question at issue. But as it might be alleged that the violence to which a railway wheel is subjected is more akin to a blow than a steady pull; and as, moreover, the pretended brittleness is attributed more to cast iron than any other description of the metal, I have made yet another kind of experiment. I got a quant.i.ty of cast iron garden nails, an inch and a quarter long and 1/8 in. thick in the middle. These I weighed, and selected such as were nearly of the same weight. I then arranged matters so that by removing a prop I could cause the blunt edge of a steel chisel weighted to 4lb. 2oz., to fall from a given height upon the middle of the nail as it was supported from each end, 1-1/16 in.
asunder. In order to secure the absolute fairness of the trials, the nails were taken at random, and an experiment with a cold nail was always alternated with one at the ordinary temperature. The nails to be cooled were placed in a mixture of salt and snow, from which they were removed and struck with the hammer in less than 5”.”
The collective result of the experiments, the details of which need not be given, was that 21 cold nails broke and 20 warm ones.
Dr. Joule adds, ”The experiments of Lavoisier and Laplace, of Smeaton, of Dulong and Pet.i.t, and of Troughton, conspire in giving a less expansion by heat to steel than iron, especially if the former be in an untempered state; but this, would in certain limits have the effect of strengthening rather than of weakening an iron wheel with a tire of steel.
”The general conclusion is this: Frost does _not_ make either iron (cast or wrought), or steel, brittle.
Mr. Spence, in his experiments, decided on having some lengths of cast iron made of a uniform thickness of in. square, from the same metal and the same mould.
He writes:--”Two of the four castings I got seemed to be good ones, and I got the surface taken off, and made them as regular a thickness as was practicable.
”I then fixed two knife-edged wedges upon the surface of a plank, at exactly nine inches distance from each other, with an opening in the plank in the intervening s.p.a.ce, the bar being laid across the wedges, a knife-edged hook was hung in the middle of the suspended piece of the bar, and to the hook was hung a large scale on which to place weights.
”The bar was tried first at a temperature of 60 F.; to find the breaking weight I placed 56lb. weights one after another on the scale, and when the ninth was put on the bar snapped. This was the only unsatisfactory experiment, as 14 or 28lb. might have done it, but I include it among others. I now adopted another precaution, by placing the one end of the plank on a fixed point and the other end on to a screw-jack, by raising which I could, without any vibration, bring the weight to bear upon the bar. By this means, small weights up to 7lb.