Part 3 (2/2)

That tuning-fork would have not only to continue its vibrations without diminution for seconds, minutes, hours, weeks, months, years, or hundreds of years, but for 30,000 years before it has accomplished the full number of pulsations which, as Ether waves, must strike the eye in one second of time, to give the impression of Light; the calculation is easy, the rills of Red Light are so small that 40,000 of these only cover one inch of length, and light travels 186,000 miles per second. If therefore the number of inches in 186,000 miles are multiplied by the 40,000, and the product is divided by the 500 times which the tuning-fork vibrates in one second, you have the number of seconds that tuning-fork must vibrate, before it has completed the number of impacts which, in one second of time, must fall on our retina to give us the impression of red light; and that tuning-fork would have to vibrate nearly twice as long, say 50,000 years, to reach the number of impulses which strike the eye in one second of time and give the impression of violet light; and between these two limits are situated the colours--Orange, Yellow, Green, Blue, and Indigo.

What a marvellous sense then is Sight, when we find that, not only can it grasp these innumerable vibrations, but can actually differentiate colours, appreciating as a different colour each increase of about one-tenth in these mult.i.tudinous frequencies; and it is princ.i.p.ally by means of this Sense of Sight that we gain a knowledge of what is happening around us. And yet what strides we have made in the last two hundred years to improve upon that instrument! With all its wonderful capabilities, we shall see later on that the eye is a very imperfect instrument for seeing very small objects, or even large objects when at a great distance. With the present compound Microscope, only developed in the last hundred years, and its apochromatic lenses, invented only in the last forty years, we are able to see and photograph objects of a minuteness immeasurably beyond the power of the human eye, and, with our telescopes, we can see and photograph stars far beyond the possibility of vision by the unaided eye; and yet, by the stellar spectroscope, we are actually able to examine and identify the very atoms of which that distant star is composed, or rather was composed hundreds of thousands of years ago; we can compare those atoms with the same atoms in our laboratories, and we find that, though the former are hundreds of thousands of years older than the latter, they show absolutely no signs of wear or loss of energy, though they have been for that enormous time, and are still, pulsating at the rate of not only millions but billions of times per second; and though the pulsations they emit have travelled across such a vast depth of s.p.a.ce that the mind cannot even imagine the distance, there has not been any diminution in the numbers of pulsations per second, nor the slightest slowing down of the rate of flight at which they started on their journey from that far-off world. If there had been the _slightest_ change we could detect it at once by means of the Spectroscope.

With another instrument we are able, not only to hear but to converse audibly, as long as we like, with another human being a thousand miles away, who is also sitting comfortably in his own arm-chair and speaking to us with as much freedom as though we were both in the same room. With another instrument we can go further, and exchange thoughts, in a few seconds, with a being on the other side of the world, by means of a thin wire that is itself fixed, and does not move, and we have lately invented another means by which we can do the same, over several thousands of miles, without even a connecting wire.

With another instrument we have gone far beyond the facility with which the Printing press enabled us to communicate our thoughts to our fellow human beings, we can actually imprint our very words and laughter upon a wax cylinder and send it to the antipodes, and our friends there, with a similar instrument, can not only hear and recognise our very voice, but can make that voice repeat our thoughts audibly, to a thousand others at the same time, and can repeat that process for hundreds of times without exhausting that voice. With another instrument we can depict on a film, not only the images of our friends but their very actions, which may also be sent to any distance, and the persons, thereon depicted, may be seen by their relatives alive and going about their everyday employments, with every movement exact to life. We can cross the Ocean against the wind and waves by means of harnessed sunbeams, without any exertion of our own, at the rate of an express train, which train, by the by, is also moved by the same means; we can dive to the bottom of the sea and journey there for hours, in perfect safety, without coming to the surface, and we are even developing wings, or their equivalent, which from immemorial tradition we were not to possess before we had finished doing our duty properly in this world and had gained admission to the next.

We can do all these things, but how ignorant we still are in the commonest doings of Nature! By giving up our whole lifetime, and spending millions of pounds, we could never make a grain of wheat or an acorn, and wherever we turn we find ourselves confronted with mysteries beyond our power to explain from a finite material standpoint; even in material vibrations we meet a mystery almost beyond our power to comprehend. Take for instance those small insects, of the family of Gra.s.shoppers, which make the primaeval woods of Central America give out a noise like the roaring of the sea, a wondrous sound never to be forgotten by those who have heard it. By means of a kind of rasp one of these insects creates a sound which Darwin states can be heard to the distance of one mile: these insects weigh less than the hundredth part of an ounce, and the instrument by which the noise is made, weighs much less than one-tenth of the total insect; it is less therefore than one thousandth part of an ounce in weight, and yet it is found, by calculation, that this small instrument is actually able to move at the enormous rate of a thousand vibrations per second and keep in motion for hours, from five to ten million tons of matter, and it does this so powerfully that every particle of that enormous bulk of matter gives out a sound audible to our ears. But even these millions of tons are not its limit of action, for we know that these vibrations must go on until, in the end, every particle of matter connected with this earth has been affected by each of those vibrations.

All our difficulties of understanding the true meaning of these and other phenomena around us are, as I have already pointed out, caused by our inability to recognise that vibration or motion has no reality, it is a pseudo-conception arising from the fact that our senses are entirely dependent upon the two modes or limitations, Time and s.p.a.ce, for their very action, and that, as conceptional knowledge is based upon perceptional knowledge, our very consciousness of living is also dependent upon these same limitations. We have seen that Motion is nothing but the product of these two modes of perceptions, and, in my next Views, I shall examine these elusive limitations, these two mysteries of Time and s.p.a.ce, the forever and the never-ending; I shall trace them to the utmost limit of our conception, and try to gain thereby a clearer insight into the fact, not only that the whole Physical Universe is but a transient and s.p.a.ce-limited phenomenon, a thin film which our senses have erected and which divides us from the Reality, but that, if our power of _introspection_ were fully developed, we should know that the Reality is nearer and dearer to us, and has much more to do with us, even in this life, than has the physical.

VIEW SIX

s.p.a.cE

We have seen that our very thoughts, and therefore consciousness of living, are limited by Time and s.p.a.ce, but we cannot with the utmost endeavour conceive a limit to Time and s.p.a.ce; they are two twin sisters, alike in many respects but different in others, and we shall realise later on that they are readily interchangeable. The sensuous aspect of Motion is, as we have seen, the time that an object takes to go over a certain s.p.a.ce--namely, what is called the rate at which it pa.s.ses from one point to another, and we cannot imagine Motion unless it contains both of these modes in however small a quant.i.ty; we may have the greatest imaginable s.p.a.ce traversed in a moment of time, or the smallest imaginable s.p.a.ce covered in what may be called, for want of a better word, an eternity, but we still have to postulate what we call Motion; this, of course, follows from the fact that our thoughts require both these modes for forming concepts. If we compare our conception of Matter with that of Time and s.p.a.ce, we see that the two latter are not separately the object of any sense, but are the modes or conditions under which all our senses act, to a greater or less degree, and these conditions cannot therefore carry the same impression of objectivity to our senses as Matter does, except perhaps in the sense that all physical phenomena are simply motion, and motion is the product of both of these limitations but not of either of them separately.

If we a.n.a.lyse our conceptions of Time and s.p.a.ce we seem forced to postulate that they are both infinitely divisible and infinitely extensible; they are both what is called continuous and not discrete, we cannot conceive any minimum in their division; both duration in Time and extension in s.p.a.ce can be reduced, as it were, to a mathematical point; nor can we conceive any maximum in either duration or extension. They are both therefore comprised in every conception possible to our consciousness; all parts of Time are time and all parts of s.p.a.ce are s.p.a.ce; there are no holes, as it were, in s.p.a.ce which are not s.p.a.ce, nor intervals in Time which are not time, they are both complete units; s.p.a.ce cannot be limited except by s.p.a.ce, and Time cannot be limited except by time. So far they are alike, but, on the other hand, s.p.a.ce is comprised of three dimensions--namely, length, breadth, and depth, whereas Time has the appearance to us of comprising one dimension only--namely, length.

Under our present conditions we can only think of one finite subject at a time, and, at that moment, all other subjects are cancelled. We can therefore only think of points in Time and s.p.a.ce as situated beyond, or in front of, other fixed points, which again must be followed by other points; we cannot fix a point in either so as to exclude the thought of a point beyond; we can only in fact examine them in a form of finite sequences.

The Idea of Infinity, which we shall refer to in a later View and show to be a false conception, is therefore a necessary result of the limitation of our thoughts; our physical Ego cannot conceive beyond the Finite as long as we are conscious of living under present conditions. With every act of perception by our senses, we have therefore not only intuition of the Visible or Finite, but we become at the same moment aware of an Invisible Infinite beyond. Time appears to us as an inconceivable, intangible something, which gives us the impression of movement without anything that moves it. s.p.a.ce is an omnipresent, intangible, inconceivable nothing, outside of which nothing which has existence can be even thought to exist. Let us now try and get an insight into what we mean by perception of distance in s.p.a.ce.

The appreciation of distance depends upon what is called _parallax_, or the apparent displacement of projectment of an object when seen by our two eyes separately. If you hold up a finger and look at it, with each eye separately, you will see that the finger is projected by each eye on to a different part of the background; the angle which the lines of sight, from each eye, make when they meet at the object, is called the angle of parallax, and the further the object is away the smaller that angle becomes; it is, in fact, the angle subtended, at the object, by the distance between the two eyes. As the object is brought nearer the eyes have to be inclined inwards to impinge on that object; the appreciation of distance then, in our sense of sight, is dependent upon our perception of the amount of inclination of those two lines of sight, and is therefore an acquired knowledge. The distance between the eyes is about 2-1/2 inches, and this is a very short base line upon which to estimate distance; in fact, without the help of perspective and known dimensions of surrounding objects, it is doubtful if anyone could by its means estimate distance beyond a few hundred yards. The object would, of course, also have to be an unknown one, as, otherwise, the converse of the above comes into play, and the distance could be estimated by the angle which the known diameter of the object subtends at the eye; but this necessitates the size of the object being known beforehand and the employment of perspective.

We can extend our perception of distances by, ourselves, moving from one place to another, gaining thereby a longer base line, and noting the displacement of projection of the object on a distant background; by that means, distance up to several miles can probably be appreciated. But, when we try to determine the distance of, say, the Moon (240,000 miles away), we are helpless, especially as we have no marked background, except in the case of occultations of the Sun or Stars. But the Astronomer at once comes to our aid; a distance of several miles is carefully measured on a level plane, and, by placing telescopes at the extremities of that known line, we can mark the inclination of those telescopes to each other when focussed upon a particular mountain peak on the moon; by this means we know the angle of parallax (180 less the sum of the two angles of inclination), and, from this and our known length of base line, we can calculate the distance. When however we go a step further and attempt to calculate the distance of the Sun (93,000,000 miles), we find our last base line again absolutely inadequate. But the astronomer helps us again; we now separate our two telescopic eyes by the whole diameter of the earth (7900 miles); this is accomplished by taking from the Equator two simultaneous observations of the Sun, at its rising and setting; for when the Sun is setting, at say the Equinox, it is at that moment rising at exactly the other side of the earth; the inclination of the two telescopes, directed to a certain point on the Sun, will now give the distance approximately, though even this base line is too short for exact.i.tude. When however we attempt to go still further and try to ascertain the distance of stars, which are a million times further off than the Sun, such a base line is quite out of the question. How then can we get a base line for our telescopes longer than the whole width of the earth? The Astronomer again provides the means. The earth takes one year to complete its vast orbit round the sun, and the diameter of that path is 186,000,000 miles. This is made our new base line for separating our telescopes; an observation of a star is taken, say, to-day, and after waiting six months, to enable the earth to reach the other extremity of its vast orbit, another observation is taken, and yet it is found, as we shall see later on, that the distance of the nearest fixed star is so _stupendous_ that even this base line, of 186,000,000 miles, shows absolutely no inclination between the two telescopes except in about a dozen cases, and even in those the angle of parallax, perceivable, is so minute that no reliable distance can be calculated; we can only say that the star is at least as far away as a certain distance, but it may be much farther.

Let us now try by other means to get a clearer insight into the subject of this View, by tracing s.p.a.ce to the utmost limit of human conception. I think the best method I can adopt will be to take you, in imagination, for a journey as far as is possible by means of the best instruments at our disposal.

We will start outwards from the Sun, and glance on our way at the worlds involved in the Solar System. Let us first understand what are the dimensions of our central Luminary. The distance of the Moon from the Earth is 240,000 miles, but the dimensions of the Sun are so great that, were the centre of the Sun placed where the centre of the Earth is, the surface of the Sun would not only extend as far as the Moon, but as far again on the other side, and that would give the radius only of the enormous circ.u.mference of the Sun; another way to understand its size is, to remember that, light travelling 186,000 miles per second, would actually take five seconds to go across its disc. Let us now start outward from this vast ma.s.s. The first world we meet is the little planet Mercury, only 3000 miles in diameter, revolving round the Sun at a distance of 36 million miles. We next come upon Venus, at a distance of 67 million miles. She is only 400 miles smaller in diameter than our Earth, and, with the dense atmosphere with which she is surrounded, animal and vegetable life similar to that on our Earth would be possible. Continuing our course, we arrive at our Earth, situated 93 million miles away from the Sun.

Still speeding on, a further 50 million miles brings us to Mars, with a diameter of nearly 5000 miles, and accompanied by two miniature moons. The sight of this planet in a good instrument is most interesting. Ocean beds and continents are visible, and the telescope shows large tracts of snow, though not necessarily formed from water (perhaps carbonic dioxide), surrounding its polar regions, which increase considerably during the winter, and decrease during the summer seasons on that planet; but there are no ca.n.a.ls! The fact that our largest and best telescopes failed to show these imaginary ca.n.a.ls, was an insurmountable barrier to the advocates of these markings, but the ”Ca.n.a.lites” made their contention ridiculous when they actually suggested that the reason for this failure to perceive them was that our telescopes were too large to see such small markings! How such a statement could have been made is incomprehensible on any supposition, as everybody knows that the whole use of size, or what is called aperture, in a telescope, is to help us to see more clearly small and faint markings.

The distances we now have to travel become so great that I shall not attempt to give them; you can, however, form an idea of the tremendous s.p.a.ces we are traversing when you consider that each successive planet is nearly double as far from the Sun as the preceding one.

In the place where, by Bode's law, we should expect to have found the next world, we find a group of small planets, ranging in size from about 200 miles in diameter down to only a few hundred yards. They pa.s.s through nearly the same point once in each of their periods of revolution round the Sun, and it has been suggested that they are fragments of a great globe rent asunder by some mighty catastrophe; over 400 of these little worlds have been discovered and have received names, or are known under certain numbers.

We now continue our voyage over the next huge s.p.a.ce and arrive at Jupiter, the largest and grandest of the planets. This world is more than 1000 times larger than our Earth, its circ.u.mference being actually greater than the distance from the Earth to the Moon. It has seven moons, and its year is about twelve times as long as ours.

Pursuing our journey, we next come to Saturn. It is nearly as large as Jupiter, and has a huge ring of planetary matter revolving round it in addition to seven moons. Further and further we go, and the planets behind us are disappearing, and even the Sun is dwindling down to a mere speck; still we hurry on, and at last alight on another planet, Ura.n.u.s, about sixty times larger than our Earth; we see moons in attendance, but they have scarcely any light to reflect; the Sun is only a star now; but we must hasten on deeper and deeper into s.p.a.ce.

We shall again, as formerly, have to go nearly as far beyond the last planet as that planet is from the Sun. The mind cannot grasp these huge distances. Still we travel on to the last planet, Neptune, revolving on its lonely orbit; sunk so deep into s.p.a.ce that, though it rushes round the Sun at the rate of 22,000 miles per hour, it takes 164 of our years to complete one revolution. Now let us look back from this remote point. What do we see? One planet only, Ura.n.u.s, is visible to the unaided eye; the giant planets, Jupiter and Saturn, have disappeared, and the Sun itself is now only a star; practically no heat, no light, all is darkness in this solitary world; the Sun is 1000 times smaller than we see it from the earth, and gives, therefore, only one-thousandth part of its heat and light. Thus far have we gone, and, standing there at the enormous distance of 3,000,000,000 miles from our starting-point, we can begin to comprehend the vast limits of the solar system; we can begin to understand the ways of this mighty family of planets and satellites.

But let us not set up too small a standard whereby to measure the Infinity of s.p.a.ce. We shall find, as we go on, that this stupendous system is but an infinitesimal part of the whole universe.

Let us now look forward along the path we are to take. We are standing on the outermost part of our Solar System, and there is no other planet towards which we can wing our flight; but all around are mult.i.tudes of stars, some s.h.i.+ning with a brightness almost equal to what our Sun appears to give forth at that great distance, others hardly visible, but the smallest telescope increases their number enormously, and presents to our mind the appalling phantom of _immensity_ in all its terror, standing there to withstand our next great step. How are we to continue on our journey when our very senses seem paralysed by this obstruction, and even imagination is powerless from utter loneliness? One guide only is there to help us, the messenger which flits from star to star, universe to universe; Light it is which will help us to appreciate even these bottomless depths.

Now, Light travels 186,000 miles per second, or 12 million miles every minute of time. It therefore takes only about four hours to traverse the huge distance between our Sun and Neptune, where we are now supposed to be standing; but to leap across the s.p.a.ce separating us from the nearest star, it would require many years for Light, travelling at 186,000 miles every second of that time, to span the distance. There are, in fact, only fifteen stars in the whole heaven that could be reached, on the wings of Light, in sixteen years!

<script>