Volume 4, Slice 1 Part 27 (1/2)

Serum-alb.u.min gives all the typical colour and precipitation reactions of the alb.u.mins. If plasma be weakly acidified with sulphuric acid, then treated with crystals of ammonium sulphate until a slight precipitate forms, filtered and the filtrate allowed to evaporate very slowly, typical crystals of serum-alb.u.min may form. According to many it is a uniform and specific substance, but others hold the view that it consists of at least three distinct substances, as shown by the fact that if a solution be gradually heated coagulation will occur at three different temperatures, viz. at 73, 77 and 84 C. On the other hand the close agreement between different a.n.a.lyses of even the amorphous preparations points to there being but one serum-alb.u.min.

When blood clots two new proteins make their appearance in the fluid part of the blood, or serum, as it is now called. The first of these is fibrin ferment (for its origin see section on _Clotting_ below). The other, fibrinoglobulin, possesses all the typical characteristics of the globulins and coagulates at 64 C.

_Carbohydrates._--Three several carbohydrates are described as occurring in plasma, viz. glycogen, animal gum and dextrose. If glycogen is present in solution in the plasma it is there in very small quant.i.ties only, and has probably arisen from the destruction of the white blood corpuscles, since some leucocytes undoubtedly contain glycogen. A small amount of carbohydrate having the formula for starch and yielding a reducing sugar on hydrolysis with acid has also been described. The constant carbohydrate const.i.tuent of plasma, however, is dextrose. This is present to the approximate amount of 0.15% in arterial blood. The amount may be much greater in the blood of the portal vein during carbohydrate absorption, and according to some observers there is less in venous than in arterial blood, but the difference is small and falls within the error of observation. The statement that when no absorption is taking place the blood of the hepatic vein is richer in dextrose than that of the portal vein (Bernard) is denied by Pavy.

_Fats._--Plasma or serum is as a rule quite clear, but after a meal rich in fats it may become quite milky owing to the presence of neutral fats in a very fine state of subdivision. This suspended fat rapidly disappears from the blood after fat absorption has ceased. To some extent it varies in composition with that of the fat absorbed, but usually consists of the glycerides of the common fatty acids--palmitic, stearic and oleic. In addition, there is a small amount of fatty acid in solution in the plasma. As to the form in which this occurs there is some uncertainty. It is possibly present as a soap or even as a neutral fat, since a little can be dissolved in plasma, the solvent substance being probably protein or cholesterin. Fatty acids also appear to be present to some extent combined with cholesterin forming cholesterin esters (about 0.06%).

_Other Organic Compounds._--In addition to the substances above described, belonging to the three main cla.s.ses of food stuffs, there are still other organic bodies present in plasma in small amounts, which for convenience we may cla.s.sify as non-nitrogenous and nitrogenous. Among the former may be mentioned lactic acid, glycerin, a lipochrome, and probably many other substances of a similar type whose separation has not yet been effected.

The non-protein nitrogenous const.i.tuents consist of the following: ammonia as carbonate or carbamate (0.2 to 0.6%), urea (0.02 to 0.05%), creatine, creatinine, uric acid, xanthine, hypoxanthine and occasionally hippuric acid. Three ferments are also described as being present: (1) a glycolytic ferment exerting an action upon dextrose; (2) a lipase or fat-splitting ferment; and (3) a diastase capable of converting starch into sugar.

_Salts._--The saline const.i.tuents of plasma comprise chlorides, phosphates, carbonates and possibly sulphates, of sodium, pota.s.sium, calcium and magnesium. The most abundant metal is sodium and the most abundant acid is hydrochloric. These two are present in sufficient amount to form about 0.65% of sodium chloride. The phosphate is present to about 0.02%. Sulphuric acid is always present if the blood has been calcined for the purposes of the a.n.a.lysis, and may then be present to about 0.013%. This is, however, probably produced during the destruction of the protein, since it has been shown that no sulphate can be removed from normal plasma by dialysis. The amount of pota.s.sium present (0.03%) is less than one-tenth of that of the sodium, and the quant.i.ties of calcium and magnesium are even less.

_Formed Elements._--When viewed under the microscope the main number of these are seen to be small yellow bodies of very uniform size, size and shape varying, however, in different animals. When observed in bulk they have a red colour, their presence in fact giving the typical colour to blood. These are the _red blood corpuscles_ or _erythrocytes_ (Gr.

[Greek: erythros], red). Mingled with them in the blood are a smaller number of corpuscles which possess no colour and have therefore been called _white blood corpuscles_ or _leucocytes_ (Gr. [Greek: leukos], white). Lastly, there are present a large number of small lens-shaped structures, less in number than the red corpuscles, and much more difficult to distinguish. These are known as _blood platelets_.

_Red Corpuscles._--These are present in very large numbers and, under normal conditions, all possess exactly the same appearance. With rare exceptions their shape is that of a biconcave disk with bevelled edges, the size varying somewhat in different animals, as is seen in the following table which gives their diameters:--

Man 0.0075 mm.

Dog 0.0073 mm.

Rabbit 0.0069 mm.

Cat 0.0065 mm.

Goat 0.0041 mm.

The coloured corpuscles of amphibia as well as of nearly all vertebrates below mammals are biconvex and elliptical. The following are the dimensions of some of the more common:--

Pigeon 0.0147 mm. long by 0.0065 mm. wide.

Frog 0.0223 ” ” 0.0157 ” ”

Newt 0.0293 ” ” 0.0195 ” ”

Proteus 0.0580 ” ” 0.0350 ” ”

Amphiuma 0.0770 ” ” 0.0460 ” ”

Their number also varies as follows:--

Man 4,000,000 to 5,000,000 per cub. mm.

Goat 9,000,000 to 10,000,000 ” ”

Sheep 13,000,000 to 14,000,000 ” ”

Birds 1,000,000 to 4,000,000 ” ”

Fish 250,000 to 2,000,000 ” ”

Frog 500,000 per cub. mm.

Proteus 36,000 ” ”

In mammals they are apparently h.o.m.ogeneous in structure, have no nucleus, but possess a thin envelope. Their specific gravity is distinctly higher than that of the plasma (1.088), so that if clotting has been prevented, blood on standing yields a large deposit which may form as much as half the total volume of the blood.

_Chemical Composition._--On destruction the red corpuscles yield two chief proteins, haemoglobin and a nucleo-protein, and a number of other substances similar to those usually obtained on the break-down of any cellular tissue, such for instance as lecithin, cholesterin and inorganic salts. The most important protein is the haemoglobin. To it the corpuscle owes its distinctive property of acting as an oxygen carrier, for it possesses the power of combining chemically with oxygen and of yielding up that same oxygen whenever there is a decrease in the concentration of the oxygen in the solvent. Thus in a given solution of haemoglobin the amount of it which is combined with oxygen depends absolutely on the oxygen concentration. The greatest dissociation of oxyhaemoglobin occurs as the oxygen tension falls from about 40 to 20 mm. of mercury. That the oxygen forms a definite compound with the haemoglobin is proved by the fact that haemoglobin thoroughly saturated with oxygen (oxyhaemoglobin) has a definite absorption spectrum showing two bands between the D and E lines, whilst haemoglobin from which the oxygen has been completely removed only gives one band between those lines. In a.s.sociation with this, oxyhaemoglobin has a typical bright red colour, whereas haemoglobin is dark purple. A further striking characteristic of haemoglobin is that it contains iron in its molecule.

The amount present, though small bears a perfectly definite quant.i.tative relation to the amount of oxygen with which the haemoglobin is capable of combining (two atoms of oxygen to one of iron). One gram of haemoglobin crystals can combine with 1.34 cc. of oxygen. On destruction with an acid or alkali, haemoglobin yields a pigment portion, haematin, and a protein portion, globin, the latter belonging to the group of the histones (Gr. [Greek: istos], web, tissue). In this cleavage the iron is found in the pigment. By the use of a strong acid, it may be made to yield iron-free pigment, the remainder of the molecule being much further decomposed.