Volume 4, Slice 1 Part 16 (1/2)
_Lime Boil._--In this operation, which is also known as _bowking_ (Ger. _beuchen_), the pieces are first run through milk of lime contained in an ordinary was.h.i.+ng machine and of such a strength that they take up about 4% of their weight of lime (CaO). They are then run over winches and guided through smooth porcelain rings (”pot-eyes”) into the kier, where they are evenly packed by boys who enter the vessel through the manhole at the top. It is of the greatest importance that the goods should be evenly packed, for, if channels or loosely-packed places are left, the liquor circulating through the kier, when boiling is subsequently in progress, will follow the line of least resistance, and the result is an uneven treatment. Of the numerous forms of kier in use, the injector kier is the one most generally adopted. This consists of an egg-ended cylindrical vessel constructed of stout boiler plate and shown in sectional elevation in fig. 4. The kier is from 10 to 12 ft. in height and from 6 to 7 ft. in diameter, and stands on three iron legs riveted to the sides, but not shown in the figure. The bottom exit pipe E is covered with a s.h.i.+eld-shaped false bottom of boiler plate, or (and this is more usual) the whole bottom of the kier is covered with large rounded stones from the river bed, the object in either case being simply to provide s.p.a.ce for the acc.u.mulation of liquor and to prevent the pipe E being blocked. The cloth is evenly packed up to within about 3 to 4 ft. of the manholes M, when lime water is run in through the liquor pipe until the level of the liquid reaches within about 2 ft. of the top of the goods. The manholes are now closed, and steam is turned on at the injector J by opening the valve v. The effect of this is to suck the liquor through E, and to force it up through pipe P into the top of the kier, where it dashes against the umbrella-shaped s.h.i.+eld U and is distributed over the pieces, through which it percolates, until on arriving at E it is again carried to the top of the kier, a continuous circulation being thus effected. As the circulation proceeds, the steam condensing in the liquor rapidly heats the latter to the boil, and as soon as, in the opinion of the foreman, all air has been expelled, the blow-through tap is closed and the boiling is continued for periods varying from six to twelve hours under 20-60 lb.
pressure. Steam is now turned off, and by opening the valve V the liquor, which is of a dark-brown colour, is forced out by the pressure of the steam it contains.
[Ill.u.s.tration: FIG 4.--High Pressure Blow-through Kier.]
The pieces are now run through a continuous was.h.i.+ng machine, which is provided with a plentiful supply of water. The machine, which is shown in fig. 5, consists essentially of a wooden vat, over which there is a pair of heavy wooden (sycamore) bowls or squeezers. The pieces enter the machine at each end, as indicated by the arrows, and pa.s.s rapidly through the bowls down to the bottom of the vat over a loose roller, thence between the first pair of guide pegs through the bowls again, and travel thus in a spiral direction until they arrive at the middle of the machine, when they leave at the side opposite to that on which they entered. The same type of machine is used for liming, chemicking, and souring.
The next operation is the ”grey sour,” in which the goods are run through a was.h.i.+ng machine containing hydrochloric acid of 2 Tw.
strength, with the object of dissolving out the lime which the goods retain in considerable quant.i.ty after the lime boil. The goods are then well washed, and are now boiled again in the ash bowking kier, which is similar in construction to the lime kier, with soda ash (3%) and a solution of rosin (1%) in caustic soda (1%) for eight to ten hours. For white bleaching the rosin soap is omitted, soda ash alone being employed.
[Ill.u.s.tration: FIG 5.--Roller Was.h.i.+ng Machine.]
The pieces are now washed free from alkali and the bleaching proper or ”chemicking” follows. This operation may be effected in various ways, but the most efficient is to run the goods in a was.h.i.+ng machine through bleaching powder solution at -1 Tw., and allow them to lie loosely piled over night, or in some cases for a longer period. They are now washed, run through dilute sulphuric or hydrochloric acid at 2 Tw. (”white sour”) and washed again. Should the white not appear satisfactory at this stage (and this is usually the case with very heavy or dense materials), they are boiled again in soda ash, chemicked with bleaching powder at 1/8 Tw. or even weaker, soured and washed. It is of the utmost importance that the final was.h.i.+ng should be as thorough as possible, in order to completely remove the acid, for if only small quant.i.ties of the latter are left in the goods, they are liable to become tender in the subsequent drying, through formation of hydrocellulose.
The modern processes of bleaching cotton pieces differ from the one described above, chiefly in that the lime boil is entirely dispensed with, its place being taken by a treatment in the kier with caustic soda (or a mixture of caustic soda and soda ash) and resin soap. The best known and probably the most widely practised of these processes is one which was worked out by the late M. Horace Koechlin in conjunction with Sir William Mather, and this differs from the old process not only in the sequence of the operations but also in the construction of the kier. This consists of a horizontal egg-ended cylinder, and is shown in transverse and longitudinal sections in figs. 6 and 7. One of the ends E const.i.tutes a door which can be raised or lowered by means of the power-driven chain C. The goods to be bleached are packed in wagons W outside the kier, and when filled these are pushed home into the kier, so that the pipes p fit with their f.l.a.n.g.es on to the fixed pipes at the bottom of the kier. The heating is effected by means of steam pipes at the lowest extremity of the kier, while the circulation of the liquor is brought about by means of the centrifugal pump P, which draws the liquor through the pipes p from beneath the false bottoms of the wagons and showers it over distributors D on to the goods. By this mode of working a considerable economy is effected in point of time, as the kier can be worked almost continuously; for as soon as one lot of goods has been boiled, the wagons are run out and two freshly-packed wagons take their place. The following is the sequence of operations:--The goods are first steeped over night in dilute sulphuric acid, after which they are washed and run through old kier liquor from a previous operation. They are then packed evenly in the wagons which are pushed into the kier, and, the door having been closed, they are boiled for about eight hours at 7-15 lb. pressure with a liquor containing soda ash, caustic soda, resin soap and a small quant.i.ty of sulphite of soda. The rest of the operations (chemicking, souring and was.h.i.+ng) are the same as in the old process.
[Ill.u.s.tration: FIG. 6.--The Mather Kier, cross section.]
[Ill.u.s.tration: FIG. 7.--The Mather Kier, longitudinal section.]
A somewhat different principle is involved in the Thies-Herzig process. In this the kier is vertical, and the circulation of the liquor is effected by means of a centrifugal or other form of pump, while the heating of the liquor is brought about outside the kier in a separate vessel between the pump and the kier by means of indirect steam. The sequence of operations is similar to that adopted in the Mather-Koechlin process, differing chiefly from the latter in the first operation, which consists in running the goods, after singeing, through very dilute boiling sulphuric or hydrochloric acid, containing in either case a small proportion of hydrofluoric acid, and then running them through a steam box, the whole operation lasting from twenty to sixty seconds.
Bleached by any of the above processes, the cloth is next pa.s.sed over a mechanical contrivance known as a ”scutcher,” which opens it out from the rope form to its full breadth, and is then dried on a continuous drying machine. Fig. 8 shows the appearance and construction of an improved form of the horizontal drying machine, which is in more common use for piece goods than the vertical form.
The machine consists essentially of a series of copper or tinned iron cylinders, which are geared together so as to run at a uniform speed.
Steam at 10-15 lb. pressure is admitted through the journalled bearings at one side of the machine, and the condensed water is forced out continuously through the bearings at the other side. The pieces pa.s.s in the direction of the arrow (fig. 9) over a scrimp rail or expanding roller round the first cylinder, then in a zigzag direction over all succeeding cylinders, and ultimately leave the machine dry, being mechanically plaited down at the other end.
If the bleaching process has been properly conducted, the pieces should not only show a uniform pure white colour, but their strength should remain unimpaired. Careful experiments conducted by the late Mr. Charles O'Neill showed in fact that carefully bleached cotton may actually be stronger than in the unbleached condition, and this result has since been corroborated by others. Excessive blueing, which is frequently resorted to in order to cover the defects of imperfect bleaching, can readily be detected by was.h.i.+ng a sample of the material in water, or, better still, in water containing a little ammonia, and then comparing with the original. The formation of oxycellulose during the bleaching process may either take place in boiling under pressure with lime or caustic soda in consequence of the presence of air in the kier, or through excessive action of bleaching powder, which may either result from the latter not being properly dissolved or being used too strong. Its detection may be effected by dyeing a sample of the bleached cotton in a cold, very dilute solution of methylene blue for about ten minutes, when any portions of the fabric in which the cellulose has been converted into oxycellulose will a.s.sume a darker colour than the rest. The depth of the colour is at the same time an indication of the extent to which such conversion has taken place.
Most bleached cotton contains some oxycellulose, but as long as the formation has not proceeded far enough to cause tendering, its presence is of no importance in white goods. If, on the other hand, the cotton has to be subsequently dyed with direct cotton colours (see DYEING), the presence of oxycellulose may result in uneven dyeing.
Tendering of the pieces, due to insufficient was.h.i.+ng after the final souring operation, is a common defect in bleached goods. As a rule the free acid can be detected by extracting the tendered material with distilled water and adding to the extract a drop of methyl orange solution, when the latter will turn pink if free acid be present.
Other defects which may occur in bleached goods are iron stains, mineral oil stains, and defects due to the addition of paraffin wax in the size.
_Bleaching of Linen._
The bleaching of linen is a much more complicated and tedious process than the bleaching of cotton. This is due in part to the fact that in linen the impurities amount to 20% or more of the weight of the fibre, whereas in cotton they do not usually exceed 5%. Furthermore these impurities, which include colouring matter, intracellular substances and a peculiar wax known as ”flax wax,” are more difficult to attack than those which are present in cotton, and the difficulty is still further enhanced in the case of piece goods owing to their dense or impervious character.
Till towards the end of the 18th century the bleaching of linen both in the north of Ireland and in Scotland was accomplished by bowking in cows' dung and souring with sour milk, the pieces being exposed to light on the gra.s.s between these operations for prolonged periods.
Subsequently potash and later on soda was subst.i.tuted for the cows'
dung, while sour milk was replaced by sulphuric acid. This ”natural bleach” is still in use in Holland, a higher price being paid for linen bleached in this way than for the same material bleached with the aid of bleaching powder. In the year 1744 Dr. James Ferguson of Belfast received a premium of 300 from the Irish Linen Board for the application of lime in the bleaching of linen. Notwithstanding this reward, the use of lime in the bleaching of linen was for a long time afterwards forbidden in Ireland under statutory penalties, and so late as 1815 Mr Barklie, a respectable linen bleacher of Linen Vale, near Keady, was ”prosecuted for using lime in the whitening of linens in his bleachyard.”
[Ill.u.s.tration: FIG. 8.--Mather & Platt's Horizontal Drying Machine.]
The methods at present employed for the bleaching of linen are, except in one or two unimportant particulars, the same as were used in the middle of the 19th century. In principle they resemble those used in cotton bleaching, but require to be frequently repeated, while an additional operation, which is a relic of the old-fas.h.i.+oned process, viz. that of ”gra.s.sing” or ”crofting,” is still essential for the production of the finest whites. Considerably more care has to be exercised in linen bleaching than is the case with cotton, and the process consequently necessitates a greater amount of manual labour. The practical result of this is that whereas cotton pieces can be bleached and finished in less than a week, linen pieces require at least six weeks. Many attempts have naturally been made to shorten and cheapen the process, but without success. The use of stronger reagents and more drastic treatment, which would at first suggest itself, incurs the risk of injury to the fibre, not so much in respect to actual tendering as to the destruction of its characteristic gloss, while if too drastic a treatment is employed at the beginning the colouring matter is liable to become set in the fibre, and it is then almost impossible to remove it.
Among the many modern improvements which have been suggested, mention may be made of the use of hypochlorite of soda in place of bleaching powder, the use of oil in the first treatment in alkali (Cross & Parkes), while de Keukelaere suggests the use of sodium sulphide for this purpose. With the object of dispensing with the operation of gra.s.sing, which besides necessitating much manual labour is subject to the influences of the atmospheric conditions, Siemens & Halske of Berlin have suggested exposure of the goods in a chamber to the action of electrolytically prepared ozone. Jardin seeks to achieve the same object by steeping the linen in dilute nitric acid.
Since the qualities of linen which are submitted to the bleacher vary considerably, and the mode of treatment has to be varied accordingly, it is not possible to give more than a bare outline of linen bleaching.