Part 2 (1/2)

In view of these considerations, it may be found economical to give the steel reinforcement of columns some stiffness of its own by sufficiently connected lateral bracing. The writer would suggest, further, that in beams where rods are used in compression a system of web members sufficiently connected should be provided, so that the strength of the combined structure would be determinate.

To sum up briefly, columns and short deep beams, especially when the latter are doubly reinforced, should be designed as framed structures, and web members should be provided with stronger connections than have been customary.

J.R. WORCESTER, M. AM. SOC. C. E. (by letter).--This paper is of value in calling attention to many of the bad practices to be found in reinforced concrete work, and also in that it gives an opportunity for discussing certain features of design, about which engineers do not agree. A free discussion of these features will tend to unify methods.

Several of the author's indictments, however, hit at practices which were discarded long ago by most designers, and are not recommended by any good authorities; the implication that they are in general use is unwarranted.

The first criticism, that of bending rods at a sharp angle, may be said to be of this nature. Drawings may be made without indicating the curve, but in practice metal is seldom bent to a sharp angle. It is undoubtedly true that in every instance a gradual curve is preferable.

The author's second point, that a suitable anchorage is not provided for bent-up rods at the ends of a beam, may also be said to be a practice which is not recommended or used in the best designs.

The third point, in reference to the counterforts of retaining walls, is certainly aimed at a very reprehensible practice which should not be countenanced by any engineer.

The fourth, fifth, and sixth items bring out the fact that undoubtedly there has been some confusion in the minds of designers and authors on the subject of shear in the steel. The author is wholly justified in criticising the use of the shearing stress in the steel ever being brought into play in reinforced concrete. Referring to the report of the Special Committee on Concrete and Reinforced Concrete, on this point, it seems as if it might have made the intention of the Committee somewhat clearer had the word, tensile, been inserted in connection with the stress in the shear reinforcing rods. In considering a beam of reinforced concrete in which the shearing stresses are really diagonal, there is compression in one case and tension in another; and, a.s.suming that the metal must be inserted to resist the tensile portion of this stress, it is not essential that it should necessarily be wholly parallel to the tensile stress. Vertical tensile members can prevent the cracking of the beam by diagonal tension, just as in a Howe truss all the tensile stresses due to shear are taken in a vertical direction, while the compressive stresses are carried in the diagonal direction by the wooden struts. The author seems to overlook the fact, however, that the reinforced concrete beam differs from the Howe truss in that the concrete forms a multiple system of diagonal compression members. It is not necessary that a stirrup at one point should carry all the vertical tension, as this vertical tension is distributed by the concrete. There is no doubt about the necessity of providing a suitable anchorage for the vertical stirrups, and such is definitely required in the recommendations of the Special Committee.

The cracks which the author refers to as being necessary before the reinforcing material is brought into action, are just as likely to occur in the case of the bent-up rods with anchors at the end, advocated by him. While his method may be a safe one, there is also no question that a suitable arrangement of vertical reinforcement may be all that is necessary to make substantial construction.

With reference to the seventh point, namely, methods of calculating moments, it might be said that it is not generally considered good practice to reduce the positive moments at the center of a span to the amount allowable in a beam fully fixed at the end, and if provision is made for a negative moment over supports sufficient to develop the stresses involved in complete continuity, there is usually a considerable margin of safety, from the fact of the lack of possible fixedness of the beams at the supports. The criticism is evidently aimed at practice not to be recommended.

As to the eighth point, the necessary width of a beam in order to transfer, by horizontal shear, the stress delivered to the concrete from the rods, it might be well worth while for the author to take into consideration the fact that while the bonding stress is developed to its full extent near the ends of the beam, it very frequently happens that only a portion of the total number of rods are left at the bottom, the others having been bent upward. It may be that the width of a beam would not be sufficient to carry the maximum bonding stress on the total number of rods near its center, and yet it may have ample shearing strength on the horizontal planes. The customary method of determining the width of the beams so that the maximum horizontal shearing stress will not be excessive, seems to be a more rational method than that suggested by Mr. G.o.dfrey.

Referring to the tenth and fourteenth points, it would be interesting to know whether the author proportions his steel to take the remaining tension without regard to the elongation possible at the point where it is located, considering the neutral axis of the section under the combined stress. Take, for instance, a chimney: If the section is first considered to be h.o.m.ogeneous material which will carry tension and compression equally well, and the neutral axis is found under the combined stresses, the extreme tensile fiber stress on the concrete will generally be a matter of 100 or 200 lb. Evidently, if steel is inserted to replace the concrete in tension, the corresponding stress in the steel cannot be more than from 1,500 to 3,000 lb. per sq. in. If sufficient steel is provided to keep the unit stress down to the proper figure, there can be little criticism of the method, but if it is worked to, say, 16,000 lb. per sq. in., it is evident that the result will be a different position for the neutral axis, invalidating the calculation and resulting in a greater stress in compression on the concrete.

L.J. MENSCH, M. AM. SOC. C. E. (by letter).--Much of the poor practice in reinforced concrete design to which Mr. G.o.dfrey calls attention is due, in the writer's opinion, to inexperience on the part of the designer.

It is true, however, that men of high standing, who derided reinforced concrete only a few years ago, now pose as reinforced concrete experts, and probably the author has the mistakes of these men in mind.

The questions which he propounds were settled long ago by a great many tests, made in various countries, by reliable authorities, although the theoretical side is not as easily answered; but it must be borne in mind that the stresses involved are mostly secondary, and, even in steel construction, these are difficult of solution. The stresses in the web of a deep steel girder are not known, and the web is strengthened by a liberal number of stiffening angles, which no expert can figure out to a nicety. The ultimate strength of built-up steel columns is not known, frequently not even within 30%; still less is known of the strength of columns consisting of thin steel casings, or of the types used in the Quebec Bridge. It seems to be impossible to solve the problem theoretically for the simplest case, but had the designer of that bridge known of the tests made by Hodgkinson more than 40 years ago, that accident probably would not have happened.

Practice is always ahead of theory, and the writer claims that, with the great number of thoroughly reliable tests made in the last 20 years, the man who is really informed on this subject will not see any reason for questioning the points brought out by Mr. G.o.dfrey.

The author is right in condemning sharp bends in reinforcing rods.

Experienced men would not think of using them, if only for the reason that such sharp bends are very expensive, and that there is great likelihood of breaking the rods, or at least weakening them. Such sharp bends invite cracks.

Neither is there any question in regard to the advantage of continuing the bent-up rods over the supports. The author is manifestly wrong in stating that the reinforcing rods can only receive their increments of stress when the concrete is in tension. Generally, the contrary happens.

In the ordinary adhesion test, the block of concrete is held by the jaws of the machine and the rod is pulled out; the concrete is clearly in compression.

The underside of continuous beams is in compression near the supports, yet no one will say that steel rods cannot take any stress there. It is quite surprising to learn that there are engineers who still doubt the advisability of using bent-up bars in reinforced concrete beams.

Disregarding the very thorough tests made during the last 18 years in Europe, attention is called to the valuable tests on thirty beams made by J.J. Harding, M. Am. Soc. C. E., for the Chicago, Milwaukee and St.

Paul Railroad.[H] All the beams were reinforced with about 3/4% of steel. Those with only straight rods, whether they were plain or patented bars, gave an average shearing strength of 150 lb. per sq. in.

Those which had one-third of the bars bent up gave an average shearing strength of 200 lb. per sq. in., and those which had nearly one-half of the rods bent up gave an average shearing strength of 225 lb. per sq.

in. Where the bent bars were continued over the supports, higher ultimate values were obtained than where some of the rods were stopped off near the supports; but in every case bent-up bars showed a greater carrying capacity than straight rods. The writer knows also of a number of tests with rods fastened to anchor-plates at the end, but the tests showed that they had only a slight increase of strength over straight rods, and certainly made a poorer showing than bent-up bars. The use of such threaded bars would increase materially the cost of construction, as well as the time of erection.

The writer confesses that he never saw or heard of such poor practices as mentioned in the author's third point. On the other hand, the proposed design of counterforts in retaining walls would not only be very expensive and difficult to install, but would also be a decided step backward in mechanics. This proposition recalls the trusses used before the introduction of the Fink truss, in which the load from the upper chord was transmitted by separate members directly to the abutments, the inventor probably going on the principle that the shortest way is the best. There are in the United States many hundreds of rectangular water tanks. Are these held by any such devices? And as they are not thus held, and inasmuch as there is no doubt that they must carry the stress when filled with water, it is clear that, as long as the rods from the sides are strong enough to carry the tension and are bent with a liberal radius into the front wall and extended far enough to form a good anchorage, the connection will not be broken. The same applies to retaining walls. It would take up too much time to prove that the counterfort acts really as a beam, although the forces acting on it are not as easily found as those in a common beam.

The writer does not quite understand the author's reference to shear rods. Possibly he means the longitudinal reinforcement, which it seems is sometimes calculated to carry 10,000 lb. per sq. in. in shear. The writer never heard of such a practice.

In regard to stirrups, Mr. G.o.dfrey seems to be in doubt. They certainly do not act as the rivets of a plate girder, nor as the vertical rods of a Howe truss. They are best compared with the dowel pins and bolts of a compound wooden beam. The writer has seen tests made on compound concrete beams separated by copper plates and connected only by stirrups, and the strength of the combination was nearly the same as that of beams made in one piece.