Part 13 (2/2)

[Footnote 102: Chamberlin, in a very suggestive article ”On a possible reversal of oceanic circulation” (Jour. of Geol., Vol. 14, pp. 363-373, 1906), discusses the probable climatic consequences of a reversal in the direction of deep-sea circulation. It is not wholly beyond the bounds of possibility that, in the course of ages the increasing drainage of salt from the lands not only by nature but by man's activities in agriculture and drainage, may ultimately cause such a reversal by increasing the ocean's salinity until the more saline tropical portion is heavier than the cooler but fresher subpolar waters. If that should happen, Greenland, Antarctica, and the northern sh.o.r.es of America and Asia would be warmed by the tropical heat which had been transferred poleward beneath the surface of the ocean, without loss _en route_. Subpolar regions, under such a condition of reversed deep-sea circulation, might have a mild climate. Indeed, they might be among the world's most favorable regions climatically.]

[Footnote 103: Encyclopaedia Britannica: article ”Ocean.”]

[Footnote 104: Chamberlin and Salisbury: Geology, Vol. II, pp. 1-132, 1906; and T. C. Chamberlin: The Origin of the Earth, 1916.]

[Footnote 105: Personal communication.]

[Footnote 106: R. T. Chamberlin: Gases in Rocks, Carnegie Inst. of Wash., No. 106, 1908.]

[Footnote 107: J. Barrell: The Origin of the Earth, in Evolution of the Earth and Its Inhabitants, 1918, p. 44, and more fully in an unpublished ma.n.u.script.]

[Footnote 108: F. W. Clarke: Data of Geochemistry, Fourth Ed., 1920, Bull. No. 695, U. S. Geol. Survey, p. 256.]

[Footnote 109: F. W. Clarke: _loc. cit._, pp. 27-34 et al.]

[Footnote C: Chas. E. St. John: Science Service Press Reports from the Mt. Wilson Observatory, May, 1922.]

[Footnote 110: Abbot and Fowle: Annals Astrophysical Observatory; Smiths. Inst., Vol. II, 1908, p. 163.

F. E. Fowle: Atmospheric Scattering of Light; Misc. Coll. Smiths. Inst., Vol. 69, 1918.]

[Footnote 111: Abbot and Fowle: _loc. cit._, p. 172.]

CHAPTER XIV

THE EFFECT OF OTHER BODIES ON THE SUN

If solar activity is really an important factor in causing climatic changes, it behooves us to subject the sun to the same kind of inquiry to which we have subjected the earth. We have inquired into the nature of the changes through which the earth's crust, the oceans, and the atmosphere have influenced the climate of geological times. It has not been necessary, however, to study the origin of the earth, nor to trace its earlier stages. Our study of the geological record begins only when the earth had attained practically its present ma.s.s, essentially its present shape, and a climate so similar to that of today that life as we know it was possible. In other words, the earth had pa.s.sed the stages of infancy, childhood, youth, and early maturity, and had reached full maturity. As it still seems to be indefinitely far from old age, we infer that during geological times its relative changes have been no greater than those which a man experiences between the ages of perhaps twenty-five and forty.

Similar reasoning applies with equal or greater force to the sun.

Because of its vast size it presumably pa.s.ses through its stages of development much more slowly than the earth. In the first chapter of this book we saw that the earth's relative uniformity of climate for hundreds of millions of years seems to imply a similar uniformity in solar activity. This accords with a recent tendency among astronomers who are more and more recognizing that the stars and the solar system possess an extraordinary degree of conservatism. Changes that once were supposed to take place in thousands of years are now thought to have required millions. Hence in this chapter we shall a.s.sume that throughout geological times the condition of the sun has been almost as at present.

It may have been somewhat larger, or different in other ways, but it was essentially a hot, gaseous body such as we see today and it gave out essentially the same amount of energy. This a.s.sumption will affect the general validity of what follows only if it departs widely from the truth. With this a.s.sumption, then, let us inquire into the degree to which the sun's atmosphere has probably been disturbed throughout geological times.

In _Earth and Sun_, as already explained, a detailed study has led to the conclusion that cyclonic storms are influenced by the electrical action of the sun. Such action appears to be most intense in sunspots, but apparently pertains also to other disturbed areas in the sun's atmosphere. A study of sunspots suggests that their true periodicity is almost if not exactly identical with that of the orbital revolution of Jupiter, 11.8 years. Other investigations show numerous remarkable coincidences between sunspots and the orbital revolution of the other planets, including especially Saturn and Mercury. This seems to indicate that there is some truth in the hypothesis that sunspots and other related disturbances of the solar atmosphere owe their periodicity to the varying effects of the planets as they approach and recede from the sun in their eccentric orbits and as they combine or oppose their effects according to their relative positions. This does not mean that the energy of the solar disturbances is supposed to come from the planets, but merely that their variations act like the turning of a switch to determine when and how violently the internal forces of the sun shall throw the solar atmosphere into commotion. This hypothesis is by no means new, for in one form or another it has been advocated by Wolfer, Birkeland, E. W. Brown, Schuster, Arctowski, and others.

The agency through which the planets influence the solar atmosphere is not yet clear. The suggested agencies are the direct pull of gravitation, the tidal effect of the planets, and an electro-magnetic effect. In _Earth and Sun_ the conclusion is reached that the first two are out of the question, a conclusion in which E. W. Brown acquiesces.

Unless some unknown cause is appealed to, this leaves an electro-magnetic hypothesis as the only one which has a reasonable foundation. Schuster inclines to this view. The conclusions set forth in _Earth and Sun_ as to the electrical nature of the sun's influence on the earth point somewhat in the same direction. Hence in this chapter we shall inquire what would happen to the sun, and hence to the earth, on their journey through s.p.a.ce, if the solar atmosphere is actually subject to disturbance by the electrical or other effects of other heavenly bodies. It need hardly be pointed out that we are here venturing into highly speculative ground, and that the verity or falsity of the conclusions reached in this chapter has nothing to do with the validity of the reasoning in previous chapters. Those chapters are based on the a.s.sumption that terrestrial causes of climatic changes are supplemented by solar disturbances which produce their effect partly through variations in temperature but also through variations in the intensity and paths of cyclonic storms. The present chapter seeks to shed some light on the possible causes and sequence of solar disturbances.

Let us begin by scanning the available evidence as to solar disturbances previous to the time when accurate sunspot records are available. Two rather slender bits of evidence point to cycles of solar activity lasting hundreds of years. One of these has already been discussed in Chapter VI, where the climatic stress of the fourteenth century was described. At that time sunspots are known to have been unusually numerous, and there were great climatic extremes. Lakes overflowed in Central Asia; storms, droughts, floods, and cold winters were unusually severe in Europe; the Caspian Sea rose with great rapidity; the trees of California grew with a vigor unknown for centuries; the most terrible of recorded famines occurred in England and India; the Eskimos were probably driven south by increasing snowiness in Greenland; and the Mayas of Yucatan appear to have made their last weak attempt at a revival of civilization under the stimulus of greater storminess and less constant rainfall.

The second bit of evidence is found in recent exhaustive studies of periodicities by Turner[112] and other astronomers. They have sought every possible natural occurrence for which a numerical record is available for a long period. The most valuable records appear to be those of tree growth, Nile floods, Chinese earthquakes, and sunspots.

Turner reaches the conclusion that all four types of phenomena show the same periodicity, namely, cycles with an average length of about 260 to 280 years. He suggests that if this is true, the cycles in tree growth and in floods, both of which are climatic, are probably due to a non-terrestrial cause. The fact that the sunspots show similar cycles suggests that the sun's variations are the cause.

These two bits of evidence are far too slight to form the foundation of any theory as to changes in solar activity in the geological past.

Nevertheless it may be helpful to set forth certain possibilities as a stimulus to further research. For example, it has been suggested that meteoric bodies may have fallen into the sun and caused it suddenly to flare up, as it were. This is not impossible, although it does not appear to have taken place since men became advanced enough to make careful observations. Moreover, the meteorites which now fall on the earth are extremely small, the average size being computed as no larger than a grain of wheat. The largest ever found on the earth's surface, at Bacubirito in Mexico, weighs only about fifty tons, while within the rocks the evidences of meteorites are extremely scanty and insignificant. If meteorites had fallen into the sun often enough and of sufficient size to cause glacial fluctuations and historic pulsations of climate, it seems highly probable that the earth would show much more evidence of having been similarly disturbed. And even if the sun should be bombarded by large meteors the result would probably not be sudden cold periods, which are the most notable phenomena of the earth's climatic history, but sudden warm periods followed by slow cooling.

Nevertheless, the disturbance of the sun by collision with meteoric matter can by no means be excluded as a possible cause of climatic variations.

<script>