Part 5 (1/2)
It is like a crowd of people pa.s.sing from a broad thoroughfare into a narrow street. As the valley grows narrower and narrower the great ma.s.s of snow in front cannot move down quickly, while more and more is piled up by the snowfall behind, and the crowd and crush grow denser and denser. In this way the snow is pressed together till the air that was hidden in its crystals, and which gave it its beautiful whiteness, is all pressed out, and the snow-crystals themselves are squeezed into one solid ma.s.s of pure, transparent ice.
Then we have what is called a ”glacier,” or river of ice, and this solid river comes creeping down till, in Greenland, it reaches the edge of the sea. There it is pushed over the brink of the land, and large pieces snap off, and we have ”icebergs.”
These icebergs - made, remember, of the same water which was first draw up from the tropics - float on the wide sea, and melting in its warm currents, topple over and over* (A floating iceberg must have about eight times as much ice under the water as it has above, and therefore, when the lower part melts in a warm current, the iceberg loses its balance and tilts over, so as to rearrange itself round the centre of gravity.) till they disappear and mix with the water, to be carried back again to the warm ocean from which they first started. In Switzerland the glaciers cannot reach the sea, but they move down into the valleys till they come to a warmer region, and there the end of the glacier melts, and flows away in a stream. The Rhone and many other rivers are fed by the glaciers of the Alps; and as these rivers flow into the sea, our drop of water again finds its way back to its home.
But when it joins itself in this way to its companions, from whom it was parted for a time, does it come back clear and transparent as it left them? From the iceberg it does indeed return pure and clear; for the fairy Crystallization will have no impurities, not even salt, in her ice-crystals, and so as they melt they give back nothing but pure water to the sea. Yet even icebergs bring down earth and stones frozen into the bottom of the ice, and so they feed the sea with mud.
But the drops of water in rivers are by no means as pure as when they rose up into the sky. We shall see in the next lecture how rivers carry down not only sand and mud all along their course, but even solid matter such as salt, lime, iron, and flint, dissolved in the clear water, just as sugar is dissolved, without our being able to see it. The water, too, which has sunk down into the earth, takes up much matter as it travels along. You all know that the water you drink from a spring is very different from rain-water, and you will often find a hard crust at the bottom of kettles and in boilers, which is formed of the carbonate of lime which is driven out of the clear water when it is boiled. The water has become ”hard” in consequence of having picked up and dissolved the carbonate of lime on its way through the earth, just in the same way as water would become sweet if you poured it through a sugar-cask. You will also have heard of iron-springs, sulphur-springs, and salt-springs, which come out of the earth, even if you have never tasted any of them, and the water of all these springs finds its way back at last to the sea.
And now, can you understand why sea-water should taste salt and bitter? Every drop of water which flows from the earth to the sea carries something with it. Generally, there is so little of any substance in the water that we cannot taste it, and we call it pure water; but the purest of spring or river-water has always some solid matter dissolved in it, and all this goes to the sea. Now, when the sun-waves come to take the water out of the sea again, they will have nothing but the pure water itself; and so all these salts and carbonates and other solid substances are left behind, and we taste them in sea-water.
Some day, when you are at the seaside, take some extra water and set it on the hob till a great deal has simmered gently away, and the liquid is very thick. Then take a drop of this liquid, and examine it under a microscope. As it dries up gradually, you will see a number of crystals forming, some square - and these will be crystals of ordinary salt; some oblong - these will be crystals of gypsum or alabaster; and others of various shapes. Then, when you see how much matter from the land is contained in sea-water, you will no longer wonder that the sea is salt; on the contrary, you will ask, Why does it not grow salter every year?
The answer to this scarcely belongs to our history of a drop of water, but I must just suggest it to you. In the sea are numbers of soft-bodied animals, like the jelly animals which form the coral, which require hard material for their sh.e.l.ls or the solid branches on which they live, and they are greedily watching for these atoms of lime, of flint, or magnesia, and of other substances brought down into the sea. It is with lime and magnesia that the tiny chalk-builders form their beautiful sh.e.l.ls, and the coral animals their skeletons, while another cla.s.s of builders use the flint; and when these creatures die, their remains go to form fresh land at the bottom of the sea; and so, though the earth is being washed away by the rivers and springs it is being built up again, out of the same materials, in the depths of the great ocean.
And now we have reached the end of the travels of our drop of water. We have seen it drawn up by the fairy ”heat,” invisible into the sky; there fairy ”cohesion” seized it and formed it into water-drops and the giant, ”gravitation,” pulled it down again to the earth. Or, if it rose to freezing regions, the fairy of ”crystallization” built it up into snow-crystals, again to fall to the earth, and either to be melted back into water by heat, or to slide down the valleys by force of gravitation, till it became squeezed into ice. We have detected it, when invisible, forming a veil round our earth, and keeping off the intense heat of the sun's rays by day, or shutting it in by night. We have seen it chilled by the blades of gra.s.s, forming sparkling dew-drops or crystals of h.o.a.r-frost, glistening in the early morning sun; and we have seen it in the dark underground, being drunk up greedily by the roots of plants. We have started with it from the tropics, and travelled over land and sea, watching it forming rivers, or flowing underground in springs, or moving onwards to the high mountains or the poles, and coming back again in glaciers and icebergs. Through all this, while it is being carried hither and thither by invisible power, we find no trace of its becoming worn out, or likely to rest from its labours. Ever onwards it goes, up and down, and round and round the world, taking many forms, and performing many wonderful feats. We have seen some of the work that it does, in refres.h.i.+ng the air, feeding the plants, giving us clear, sparkling water to drink, and carrying matter to the sea; but besides this, it does a wonderful work in altering all the face of our earth. This work we shall consider in the next lecture, on ”The two great Sculptors - Water and Ice.”
Week 13
LECTURE V. THE TWO GREAT SCULPTORS - WATER AND ICE.
In our last lecture we saw that water can exist in three forms:-- 1st, as an invisible vapour; 2nd, as liquid water; 3rd, as solid snow and ice.
To-day we are going to take the two last of these forms, water and ice, and speak of them as sculptors.
To understand why they deserve this name we must first consider what the work of a sculptor is. If you go into a statuary yard you will find there large blocks of granite, marble, and other kinds of stone, hewn roughly into different shapes; but if you pa.s.s into the studio, where the sculptor himself is at work you will find beautiful statues, more or less finished; and you will see that out of rough blocks of stone he has been able to cut images which look like living forms. You can even see by their faces whether they are intended to be sad, or thoughtful, or gay, and by their att.i.tude whether they are writhing in pain, or dancing with joy, or resting peacefully. How has all this history been worked out from the shapeless stone? It has been done by the sculptor's chisel. A piece chipped off here, a wrinkle cut there, a smooth surface rounded off in another place, so as to give a gentle curve; all these touches gradually shape the figure and mould it out of the rough stone, first into a rude shape and afterwards, by delicate strokes, into the form of a living being.
Now, just in the same way as the wrinkles and curves of a statue are cut by the sculptor's chisel, so the hills and valleys, the steep slopes and gentle curves on the face of our earth, giving it all its beauty, and the varied landscapes we love so well, have been cut out by water and ice pa.s.sing over them. It is true that some of the greater wrinkles of the earth, the lofty mountains, and the high ma.s.ses of land which rise above the sea , have been caused by earthquakes and shrinking of the earth. We shall not speak of these to-day, but put them aside as belonging to the rough work of the statuary yard. But when once these large ma.s.ses are put ready for water to work upon, then all the rest of the rugged wrinkles and gentle slopes which make the country so beautiful are due to water and ice, and for this reason I have called them ”sculptors.”
Go for a walk in the country, or notice the landscape as you travel on a railway journey. You pa.s.s by hills and through valleys, through narrow steep gorges cut in hard rock, or through wild ravines up the sides of which you can hardly scramble. Then you come to gra.s.sy slopes and to smooth plains across which you can look for miles without seeing a hill; or, when you arrive at the seash.o.r.e, you clamber into caves and grottos, and along dark narrow pa.s.sages leading from one bay to another. All these - hills, valleys, gorges, ravines, slopes, plains, caves, grottos, and rocky sh.o.r.es - have been cut out by the water. Day by day and year by year, while everything seems to us to remain the same, this industrious sculptor is chipping away, a few grains here, a corner there, a large ma.s.s in another place, till he gives to the country its own peculiar scenery, just as the human sculptor gives expression to his statue.
Our work to-day will consist in trying to form some idea of the way in which water thus carves out the surface of the earth, and we will begin by seeing how much can be done by our old friends the rain-drops before they become running streams.
Everyone must have noticed that whenever rain falls on soft ground it makes small round holes in which it collects, and then sinks into the ground, forcing its way between the grains of earth. But you would hardly think that the beautiful pillars in Fig. 24 have been made entirely in this way by rain beating upon and soaking into the ground.
Where these pillars stand there was once a solid ma.s.s of clay and stones, into which the rain-drops crept, loosening the earthly particles; and then when the sun dried the earth again cracks were formed, so that the next shower loosened it still more, and carried some of the mud down into the valley below. But here and there large stones were buried in the clay, and where this happened the rain could not penetrate, and the stones became the tops of tall pillars of clay, washed into shape by the rain beating on its sides, but escaping the general destruction of the rest of the mud. In this way the whole valley has been carved out into fine pillars, some still having capping-stones, while others have lost them, and these last will soon be washed away. We have no such valleys of earth-pillars here in England, but you may sometimes see tiny pillars under bridges where the drippings have washed away the earth between the pebbles, and such small examples which you can observe for yourselves are quite as instructive as more important ones.
Another way in which rain changes the surface of the earth is by sinking down through loose soil from the top of a cliff to a depth of many feet till it comes to solid rock, and then lying spread over a wide apace. Here it makes a kind of watery mud, which is a very unsafe foundation for the hill of earth above it, and so after a time the whole ma.s.s slips down and makes a fresh piece of land at the foot of the cliff. If you have ever been at the Isle of Wight you will have seen an undulating strip of ground, called the Undercliff, at Ventnor and other places, stretching all along the sea below the high cliffs. This land was once at the top of the cliff, and came down by succession of landslips such as we have been describing. A very great landslip of this kind happened in the memory of living people, at Lyme Regis, in Dorsets.h.i.+re, in the year 1839.
You will easily see how in forming earth-pillars and causing landslips rain changes the face of the country, but these are only rare effects of water. It is when the rain collects in brooks and forms rivers that it is most busy in sculpturing the land. Look out some day into the road or the garden where the ground slopes a little, and watch what happens during a shower of rain. First the rain-drops run together in every little hollow of the ground, then the water begins to flow along any ruts or channels it can find, lying here and there in pools, but always making its way gradually down the slope.
Meanwhile from other parts of the ground little rills are coming, and these all meet in some larger ruts where the ground is lowest, making one great stream, which at last empties itself into the gutter or an area, or finds its way down some grating.
Now just this, which we can watch whenever a heavy shower of rain comes down on the road, happens also all over the world. Up in the mountains, where there is always a great deal of rain, little rills gather and fall over the mountain sides, meeting in some stream below. Then, as this stream flows on, it is fed by many runnels of water, which come from all parts of the country, trickling along ruts, and flowing in small brooks and rivulets down the gentle slope of the land till they reach the big stream, which at last is important enough to be called a river.
Sometimes this river comes to a large hollow in the land and there the water gathers and forms a lake; but still at the lower end of this lake out it comes again, forming a new river, and growing and growing by receiving fresh streams until at last it reaches the sea.
The River Thames, which you all know, and whose course you will find clearly described in Mr. Huxley's 'Physiography,' drains in this way no less than one-seventh of the whole of England. All the rain which falls in Berks.h.i.+re, Oxfords.h.i.+re, Middles.e.x, Hertfords.h.i.+re, Surrey, the north of Wilts.h.i.+re and north-west of Kent, the south of Buckinghams.h.i.+re and of Gloucesters.h.i.+re, finds its way into the Thames; making an area of 6160 square miles over which every rivulet and brook trickle down to the one great river, which bears them to the ocean. And so with every other area of land in the world there is some one channel towards which the ground on all sides slopes gently down, and into this channel all the water will run, on its way to the sea.
But what has this to do with sculpture or cutting out of valleys?
If you will only take a gla.s.s of water out of any river, and let it stand for some hours, you will soon answer this question for yourself. For you will find that even from river water which looks quite clear, a thin layer of mud will fall to the bottom of the gla.s.s, and if you take the water when the river is swollen and muddy you will get quite a thick deposit. This shows that the brooks, the streams, and the rivers wash away the land as they flow over it and carry it from the mountains down to the valleys, and from the valleys away out into the sea.